Второй закон Ньютона
- 1 year ago
- 0
- 0
Тре́тий зако́н Нью́тона или зако́н ра́венства де́йствия и противоде́йствия — один из трёх основных законов ньютоновской механики .
Закон был впервые сформулирован И. Ньютоном в книге « Математические начала натуральной философии » (1687):
Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны .
Более точно, под телами нужно понимать материальные точки ; современная формулировка закона такова:
Силы взаимодействия двух материальных точек равны по величине, противоположно направлены, и действуют вдоль прямой, соединяющей эти материальные точки .
В виде формулы:
где — сила , с которой первое тело действует на второе («действие»), а — сила, с которой второе тело действует на первое («противодействие»).
Действие и противодействие всегда имеют одинаковую природу: если, например, сила гравитационная, то тоже, если — сила трения, то тоже, и т. д.
Краткая формулировка закона в виде «действие равно противодействию» может вызывать недоразумения, например, такой парадокс:
Пусть лошадь запряжена в телегу, и тянет её с некоторой силой вперёд. Но согласно 3-му закону Ньютона, существует сила противодействия, равная ей по величине и направленная назад. Поскольку в сумме обе силы дают ноль, телега никогда не сможет сдвинуться с места.
Ошибка здесь в том, что силы действия и противодействия приложены к разным телам (в этом примере: к телеге и к лошади), поэтому их бессмысленно складывать. Кроме этих сил, и на лошадь, и на телегу действует сила трения, которая, собственно, и приводит лошадь в движение (именно, сила трения копыт лошади об землю направлена вперёд и преодолевает силу противодействия телеги, в то время как сила тяги лошади преодолевает силу трения телеги об землю, направленную назад) .
Рассмотрим два тела, которые взаимодействуют только друг с другом ( замкнутая система ). Тогда, согласно второму закону Ньютона , их ускорения и определяются из уравнений
С учётом третьего закона Ньютона отсюда получается
или же
где и — скорости тел. Величина называется импульсом тела, а последнее соотношение есть закон сохранения импульса . Дополнив 3-й закон Ньютона принципом независимости действия сил , можно вывести закон сохранения импульса для замкнутой системы, состоящей из произвольного числа тел. Хотя в рамках ньютоновской механики закон сохранения импульса является следствием законов Ньютона, опыт показывает, что это один из наиболее общих законов физики, который выполняется даже тогда, когда сама ньютоновская механика неприменима .
Как 3-й закон Ньютона, так и более общий закон сохранения импульса являются следствиями фундаментальной симметрии природы — однородности пространства . Однородность пространства означает, что все его точки равноправны, то есть, закон движения замкнутой системы не изменится, если систему переместить в пространстве как целое.
Связь 3-го закона Ньютона с однородностью пространства хорошо видна в рамках лагранжева формализма . Если пространство однородно, то потенциальная энергия может зависеть только от разностей координат тел: , поэтому
откуда следует .
Третий закон Ньютона, как и вообще вся ньютоновская механика, связан с идеей действия на расстоянии , согласно которой сила, действующая со стороны одного тела на другое в некоторый момент времени, определяется их положением в тот же момент времени. Другими словами, это означает бесконечную скорость передачи взаимодействий. Согласно современным представлениям, взаимодействия передаются посредством полей , и, как следует из опыта, имеют конечную скорость, не превышающую скорости света . Поэтому при движении со скоростями, близкими к скорости света, особенно когда расстояния между телами велики, третий закон Ньютона неприменим. Однако закон сохранения импульса по-прежнему выполняется, если, кроме импульсов тел, учесть также импульс поля (например электромагнитного, гравитационного), посредством которого они взаимодействуют .
Пример: на тело, поглощающее свет, действует сила давления света . Но никакой «силы противодействия» здесь нет, как нет и никакого тела, к которому она была бы приложена. С точки зрения закона сохранения импульса, давление света возникает потому, что импульс электромагнитного поля передаётся телу .