Университет Лаваля
- 1 year ago
- 0
- 0
Сопло́ Лава́ля — газовый канал особого профиля (имеющий сужение) для изменения скорости проходящего по нему газового потока. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей , в том числе прямоточных сверхзвуковых и гиперзвуковых (в т.ч. ядерных ) реактивных двигателей.
В простейшем случае сопло Лаваля может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.
Сопло было предложено в 1890 году шведским изобретателем Густафом де Лавалем для паровых турбин .
Приоритет Годдарда на применение сопла Лаваля для ракет подтверждается рисунком в описании изобретения в патенте США от 7 июля 1914 года на двухступенчатую твердотопливную ракету, заявленном в октябре 1913 г. (По другим данным, впервые в ракетной технике сопло Лаваля применил в 1896—97 годах Вильгельм Унге , с фирмой которого, «Марс», Лаваль впоследствии сотрудничал). Феномен ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным путём. Позже это явление нашло теоретическое объяснение в рамках газовой динамики .
В России в ракетном двигателе сопло Лаваля впервые было использовано генералом М. М. Поморцевым в 1915 г. В ноябре 1915 года он обратился в Аэродинамический институт с проектом боевой пневматической ракеты. Ракета Поморцева приводилась в движение сжатым воздухом, что существенно ограничивало её дальность, но делало бесшумной. Ракета предназначалась для стрельбы из окопов по вражеским позициям. Боеголовка начинялась тротилом . В ракете Поморцева было по крайней мере два интересных конструктивных решения: в двигателе имелось сопло Лаваля , а с корпусом был связан кольцевой стабилизатор .
При анализе течения газа в сопле Лаваля принимаются следующие упрощающие допущения:
Отношение локальной скорости к локальной скорости звука обозначается числом Маха , которое также понимается локальным, то есть зависимым от координаты :
Из уравнения состояния идеального газа следует: , здесь — локальная плотность газа, — локальное давление.
С учётом этого, а также с учётом стационарности и одномерности потока уравнение Эйлера принимает вид:
что, учитывая (1), преобразуется в
Уравнение (2) является ключевым в данном рассуждении.
Рассмотрим его в следующей форме:
Величины и характеризуют относительную степень изменяемости по координате плотности газа и его скорости соответственно. Причем уравнение (2.1) показывает, что соотношение между этими величинами равно квадрату числа Маха (знак минус означает противоположную направленность изменений: при возрастании скорости плотность убывает). Таким образом, на дозвуковых скоростях плотность меняется в меньшей степени, чем скорость, а на сверхзвуковых — наоборот. Как будет видно дальше, это и определяет сужающуюся-расширяющуюся форму сопла.
Поскольку массовый расход газа постоянен:
где — площадь местного сечения сопла,
дифференцируя обе части этого уравнения по , получаем:
.
После подстановки из (2) в это уравнение, получаем окончательно:
Заметим, что при увеличении скорости газа в сопле знак выражения положителен и, следовательно, знак производной определяется знаком выражения:
Из чего можно сделать следующие выводы:
Итак, на сужающемся, докритическом участке сопла движение газа происходит с дозвуковыми скоростями. В самом узком, критическом сечении сопла локальная скорость газа достигает звуковой. На расширяющемся, закритическом участке, газовый поток движется со сверхзвуковыми скоростями.
Перемещаясь по соплу, газ расширяется, его температура и давление падают, а скорость возрастает. Внутренняя энергия газа преобразуется в кинетическую энергию его направленного движения. КПД этого преобразования в некоторых случаях (например, в соплах современных ракетных двигателей) может превышать 70 %, что значительно превосходит КПД реальных тепловых двигателей всех других типов. Это объясняется тем, что рабочее тело не передаёт механическую энергию никакому посреднику ( поршню или лопастям турбины ). В других тепловых двигателях на этой передаче имеют место значительные потери. Кроме того, газ, проходя через сопло на значительной скорости, не успевает передать его стенкам заметное количество своей тепловой энергии, что позволяет считать процесс адиабатическим .
Из уравнения состояния идеального газа , и баланса энергии в газовом потоке выводится формула расчёта линейной скорости истечения газа из сопла Лаваля:
где
— скорость газа на выходе из сопла, м/с,
— абсолютная температура газа на входе,
— универсальная газовая постоянная Дж/(моль·К),
— молярная масса газа, кг/моль,
— удельная теплоёмкость при постоянном давлении, Дж/(моль·К),
— удельная теплоёмкость при постоянном объеме, Дж/(моль·К),
— абсолютное давление газа на выходе из сопла, Па
— абсолютное давление газа на входе в сопло, Па.
При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере ) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.
В общем случае удельный импульс сопла Лаваля (при работе как в среде, так и в пустоте) определяется выражением:
Здесь — скорость истечения газа из сопла, определяемая по формуле (4); — площадь среза сопла; — давление газа на срезе сопла; — давление окружающей среды; — секундный массовый расход газа через сопло.
Из выражения (5) следует, что удельный импульс и, соответственно, тяга ракетного двигателя в пустоте (при ) всегда выше, чем в атмосфере. Это находит отражение в характеристиках реальных ракетных двигателей: обычно для двигателей, работающих в атмосфере, указываются по два значения для удельного импульса и тяги — в пустоте и на уровне моря (например, РД-107 ).
Зависимость характеристик двигателя от давления газа на срезе сопла носит более сложный характер: как следует из уравнения (4), растёт с убыванием , а добавка — убывает, и при становится отрицательной.
При фиксированном расходе газа и давлении на входе в сопло величина зависит только от площади среза сопла, которую обычно характеризуют относительной величиной — степенью расширения сопла — отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление , и тем больше скорость истечения газа .
Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.
Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 — двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.
Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок — «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке справа. Эта схема была практически реализована, в частности, в конструкции двигателя НК-33-1 .
Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление вектора тяги , что существенно повышает маневренность самолёта.