Interested Article - Уравнение Ван-дер-Ваальса

Уравне́ние Ван-дер-Ва́альса ( или уравне́ние Ван дер Ва́альса ) — уравнение , связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса .

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах , в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние , а идеальные — не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры , но и объёма .

Уравнение Ван-дер-Ваальса — это одно из широко известных приближённых уравнений состояния, описывающее свойства реального газа, имеющее компактную форму и учитывающее основные характеристики газа с межмолекулярным взаимодействием .

Уравнение состояния

Изотермы газа ван дер Ваальса:
P — давление;
V — объём;
K — критическая точка;
abKcd бинодаль (граница области двухфазного равновесия; область под колоколом бинодали — область двухфазного равновесия жидкость — пар);
eKf спинодаль (граница между областями метастабильных и термодинамически неустойчивых состояний; область под колоколом спинодали — нереализуемые состояния);
bc коннода (линия конденсации);
abKe — область перегретой жидкости;
dcKf — область переохлаждённого пара;
площади закрашенных фигур под изобарой bc и над ней равны ( правило Максвелла , 1875)

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением , объёмом и температурой .

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка — суммарный объём молекул газа.

Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

где

Из рисунка, на котором изображены изотермы газа Ван-дер-Ваальса, видно, что ниже некоторой температуры зависимость перестаёт быть монотонной: образуется петля Ван-дер-Ваальса , в которой увеличению давления соответствует увеличение объёма, что противоречит законам термодинамики . Появление петли означает, что уравнение Ван-дер-Ваальса в данной области изменения и перестаёт описывать действительную ситуацию, когда имеет место фазовый переход газ — жидкость и реальная изотерма представляет собой отрезок прямой — конноду (ноду), соединяющую две фигуративные точки на бинодали.

Вывод уравнения

Наиболее известны два способа получения уравнения: традиционный вывод самого Ван-дер-Ваальса и вывод методами статистической физики .

Традиционный вывод

Рассмотрим сначала газ, в котором частицы не взаимодействуют друг с другом, такой газ удовлетворяет уравнению состояния идеального газа :

Далее предположим, что частицы данного газа являются упругими сферами одинакового радиуса . Так как газ находится в сосуде конечного объёма, то пространство, где могут перемещаться частицы, будет несколько меньше. В исходной формуле следует вычесть из всего объёма некую его часть , которая, вообще говоря, зависит только от вещества, из которого состоит газ. Таким образом, получается следующее уравнение:

Вычитаемый объём не будет в точности равен суммарному объёму всех частиц. Если частицы считать твёрдыми и абсолютно упругими шариками, то вычитаемый объём будет примерно в четыре раза больше. Это легко объясняется тем, что центры упругих шаров не могут приближаться на расстояние ближе .

Далее Ван-дер-Ваальс рассматривает силы притяжения между частицами газа и делает следующие допущения:

  • Частицы распределены равномерно по всему объёму.
  • Силы притяжения стенок сосуда не учитываются, что в общем случае неверно.
  • Частицы, находящиеся внутри сосуда и непосредственно у стенок, ощущают притяжение по-разному: внутри сосуда действующие силы притяжения других частиц компенсируют друг друга.

Таким образом, для частиц внутри сосуда силы притяжения не учитываются. Частицы, находящиеся непосредственно у края сосуда, затягиваются внутрь силой, пропорциональной концентрации:

.

Число частиц, которые находятся непосредственно у стенок, в свою очередь тоже предполагается пропорциональным концентрации . Можно считать, что давление на стенки сосуда меньше на некоторую величину, обратно пропорциональную квадрату объёма:

Окончательное уравнение:


Внутренняя энергия газа Ван-дер-Ваальса

Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы при разведении молекул на бесконечность:

Внутренняя энергия газа Ван-дер-Ваальса складывается из кинетической энергии хаотического (теплового) движения молекул относительно центра масс газа и только что нами посчитанной потенциальной энергии межмолекулярного взаимодействия. Так, для молей газа:

где молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.

Адиабата

Уравнение адиабаты для газа Ван-дер-Ваальса:

где

Критические параметры

Критическими параметрами газа называются значения его макропараметров (давления, объёма и температуры) в критической точке , то есть в таком состоянии, когда жидкая и газообразная фазы вещества неразличимы. Найдём эти параметры для газа Ван-дер-Ваальса, для чего преобразуем уравнение состояния:

Мы получили кубическое уравнение относительно

В критической точке все три корня уравнения сливаются в один, поэтому предыдущее уравнение эквивалентно следующему:

Приравняв коэффициенты при соответствующих степенях , получим равенства:

Из них вычислим значения критических параметров

и критического коэффициента:

Приведённые параметры

Приведённые параметры определяются как отношения

Если подставить в уравнение Ван-дер-Ваальса получится приведённое уравнение состояния (для моль).

Если вещества обладают двумя одинаковыми приведёнными параметрами из трёх, то и третьи приведённые параметры у них совпадают.

Недостатки уравнения Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса более точно описывает поведение реальных газов, чем уравнение состояния идеального газа, но вместе с тем не является абсолютно адекватной моделью. Его недостатки :

1. Для реальных веществ
2. Для реальных веществ (скорее, ).
3. Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.

Константы Ван-дер-Ваальса для некоторых газов

Константы Ван-дер-Ваальса
Вещество a ,
Па·м 6 ·моль −2
b ,
10 −6 м 3 ·моль −1
Азот N 2 0,1370 38,7
Аммиак NH 3 0,4225 37,1
Аргон Ar 0,1355 32,0
Ацетилен C 2 H 2 0,4516 52,2
Бром Br 2 0,975 59,1
Бромоводород HBr 0,4500 44,2
Бутан C 4 H 10 1,389 116,4
Водород H 2 0,02452 26,5
Вода H 2 O 0,5537 30,5
Гексафторид серы SF 6 0,7857 87,9
Гелий He 0,00346 23,8
Гидразин N 2 H 4 0,846 46,2
Кислород O 2 0,1382 31,9
Криптон Kr 0,5193 10,6
Ксенон Xe 0,4192 51,6
Метан CH 4 0,2303 43,1
Неон Ne 0,0208 16,7
Озон O 3 0,3570 48,7
Окись углерода CO 0,1472 39,5
Пропан C 3 H 8 0,939 90,5
Сернистый ангидрид SO 2 0,6865 56,8
Сероводород H 2 S 0,4544 43,4
Углекислый газ CO 2 0,3658 42,9
Фтор F 2 0,1171 29,0
Фтороводород HF 0,9565 73,9
Хлор Cl 2 0,6343 54,2
Хлороводород HCl 0,3700 40,6
Циановодород HCN 1,129 88,1
Этан C 2 H 6 0,5580 65,1
Этилен C 2 H 4 0,4612 58,2


См. также

Примечания

Комментарии

  1. В большинстве современных словарей, руководств и энциклопедий название уравнения приводится в виде «уравнение Ван-дер-Ваальса » . Вместе с тем в Большой российской энциклопедии уравнение называется «уравнение Ван дер Ваальса » .

Источники

  1. Русский орфографический словарь: около 200 000 слов / Российская академия наук . Институт русского языка им. В. В. Виноградова / Под. ред. В. В. Лопатина , О. Е. Ивановой. — 4-е изд., испр. и доп. — М. : АСТ-Пресс Книга , 2013. — С. 68. — 896 с. — (Фундаментальные словари русского языка). — ISBN 978-5-462-01272-3 .
  2. Мильчин А. Э. , Чельцова Л. К. // Справочник издателя и автора. Редакционно-издательское оформление издания. — 2-е изд., испр. и доп.. — М. : Олма-Пресс , 2003. — 800 с. — 3000 экз. ISBN 5-224-04565-7 .
  3. Любитов Ю. Н. // Физическая энциклопедия / Гл. ред. А. М. Прохоров . — М. : Советская энциклопедия , 1988. — Т. 1. — С. 240. — 704 с. — 100 000 экз.
  4. Анисимов М. А. // Химическая энциклопедия / Гл. ред. И. Л. Кнунянц . — М. : « Советская энциклопедия », 1988. — Т. 1. — С. 352.
  5. Лопаткин А. А. // Большая Советская энциклопедия / Гл. ред. А. М. Прохоров. — М. : «Советская энциклопедия», 1971. — Т. 4.
  6. Башкиров А. Г. // Большая Российская энциклопедия / Гл. ред. Ю. С. Осипов . — М. , 2006. — Т. 4. — С. 579. — 750 с. — 65 000 экз. ISBN 5-85270-333-8 .
  7. .
  8. , с. 245.
  9. / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-33. — 2828 p. — ISBN 1420090844 .

Литература

  • Сивухин Д. В. Общий курс физики. — М. : Наука , 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.
  • Матвеев А. Н. Молекулярная физика. — М. : Высшая школа, 1981. — С. 237—253. — 400 с.
  • Atkins P. W., De Paula J. Physical Chemistry. — W. H. Freeman, 2010. — Т. 1. — ISBN 9780199593361 .
  • Иванов В. К. . Дата обращения: 6 ноября 2012. Архивировано из 24 января 2010 года. (4.1. Взаимодействие молекул газа. Уравнение Ван-дер-Ваальса)
Источник —

Same as Уравнение Ван-дер-Ваальса