Эффект Холла
- 1 year ago
- 0
- 0
Туннельное магни́тное сопротивле́ние, туннельное магнитосопротивление или магнетосопротивление (сокр. ТМС , англ. Tunnel magnetoresistance , сокр. TMR) — квантовомеханический эффект, проявляется при протекании тока между двумя слоями ферромагнетиков , разделенных тонким (около 1 нм ) слоем диэлектрика . При этом общее сопротивление устройства, ток в котором протекает из-за туннельного эффекта , зависит от взаимной ориентации полей намагничивания двух магнитных слоев. Сопротивление выше при антипараллельной намагниченности слоев. Эффект туннельного магнитного сопротивления похож на эффект гигантского магнитного сопротивления , но в нём вместо слоя немагнитного металла используется слой изолирующего туннельного барьера.
Эффект был открыт в 1975 году Мишелем Жюльером, использовавшим железо в качестве ферромагнетика и оксид германия в качестве диэлектрика (структура Fe / GeO / Co ). Данный эффект проявлялся при температуре 4,2 К , при этом относительное изменение сопротивления составляло около 14 %, поэтому ввиду отсутствия практического применения он не привлек к себе внимания .
При комнатной температуре действие эффекта впервые было открыто в 1991 году Терунобу Миязаки ( Университет Тохоку , Япония ), изменение сопротивления составило всего 2,7 %. Позже, в 1994 году , Миядзаки впервые обнаружил в переходе Fe/ Al 2 O 3 /Fe отношение магнитосопротивления 30 % при 4,2 К и 18 % при 300 K . Независимо от него группой ученых во главе с Джагадишем Мудера в соединениях CoFe и Co был обнаружен эффект 11,8 % , в связи с возобновлением интереса к исследованиям в этой области после открытия эффекта гигантского магнитного сопротивления . Наибольший эффект, наблюдаемый в то время с изоляторами из оксида алюминия, составлял около 70 % при комнатной температуре.
В 2001 году группа Батлера и группа Матона независимо сделали теоретическое предсказание, что при использовании железа в качестве ферромагнетика и оксида магния в качестве диэлектрика эффект туннельного магнитного сопротивления может возрасти на несколько тысяч процентов. В том же году Боуэн и др. первыми сообщили об экспериментах, показывающих значительное туннельное магнитосопротивление в туннельном переходе на основе MgO (Fe/MgO/FeCo) .
В 2004 году группа Перкина и группа Юаса смогли изготовить устройства на основе Fe/MgO/Fe и достичь величины туннельного магнитосопротивления в 200 % при комнатной температуре .
В 2007 году устройства на основе ТМР эффекта с оксидом магния полностью заменили устройства на основе эффекта гигантского магнитного сопротивления на рынке устройств магнитного хранения информации .
В 2008 году С. Икеда, Х. Оно и др. из Университета Тохоку в Японии наблюдали эффект относительного изменения сопротивления до 604 % при комнатной температуре и более 1100 % при 4,2 К в соединениях CoFeB/MgO/CoFeB . Однако впоследствии оказалось, что столь большие значения являлись результатом ошибки датчика сопротивления, и статьи были отозваны.
В классической физике , если энергия частицы меньше высоты барьера, то она полностью отражается от барьера. Напротив, в квантовой механике существует отличная от нуля вероятность нахождения частицы по другую сторону барьера. В структуре ферромагнит — изолятор — ферромагнит для электрона энергией ε F изолятор представляет собой барьер толщиной d и высотой ε В > ε F .
Рассмотрим зонную структуру магнитных ( Co , Fe , Ni ) металлов. Переходные металлы имеют 4s, 4p и 3d валентные электроны, различающиеся орбитальным моментом. Состояния 4s и 4p образуют sp — зону проводимости , в которой электроны имеют высокую скорость, малую плотность состояний и, следовательно, большую длину свободного пробега , то есть можно предполагать, что они ответственны за проводимость 3d металлов. В то же время d-зона характеризуется высокой плотностью состояний и низкой скоростью электронов.
Как известно, у ферромагнитных 3d металлов d-зона расщеплена вследствие обменного взаимодействия . В соответствии с принципом Паули из-за кулоновского отталкивания d электронов им энергетически более выгодно иметь параллельно ориентированные спины, что приводит к появлению спонтанного магнитного момента. Иными словами, вследствие обменного расщепления d зоны число занятых состояний различно для электронов с направлением спина вверх и вниз, что дает не равный нулю магнитный момент.
В отсутствие магнитного поля ферромагнитные электроды имеют противоположное направление намагниченностей (антипараллельная конфигурация, АР). Зона d — электронов расщеплена обменным взаимодействием как показано на рисунке. При этом происходит туннелирование электронов со спином вверх из большего числа состояний в меньшее и наоборот для электронов с противоположным спином. Наложение магнитного поля приводит к параллельной ориентации (Р) намагниченности ферромагнитных электродов. В этом случае электроны со спином вверх туннелируют из большего числа состояний в большее, а электроны со спином вниз — из малого числа состояний в малое. Это приводит к различию туннельных сопротивлений для параллельной и антипараллельной конфигурации. Данное изменение сопротивления при переориентации намагниченности во внешнем магнитном поле и является проявлением туннельного магнитосопротивления (ТМС).
В настоящее время на основании эффекта туннельного магнитного сопротивления создана магниторезистивная оперативная память ( MRAM ), и он также применяется в считывающих головках жестких дисков .