Список экзопланет, открытых в 2012 году
- 1 year ago
- 0
- 0
Классификация экзопланет по Сударскому — система классификации внешнего вида экзопланет-гигантов в зависимости от температуры их внешних слоев. Представление экзопланеты внешнему наблюдателю базируется на теоретической модели поведения атмосферы газового гиганта и данных о её химическом составе. Учитываются также альбедо и известные спектры отражения экзопланет-гигантов.
В рамках данной классификации газовые гиганты делятся на пять классов в зависимости от степени разогрева, и обозначаются римскими цифрами. Система была предложена Давидом Сударским (с соавторами из Аризонского университета ) в работе «Albedo and Reflection Spectra of Extrasolar Giant Planets» и развита в дальнейшем в работе «Theoretical Spectra and Atmospheres of Extrasolar Giant Planets» .
Многие свойства экзопланет изучены очень слабо, например, химический состав их атмосфер. Причиной этого являются невозможность непосредственного наблюдения экзопланет — большинство из них изучаются косвенным путём. И лишь единицы могут быть изучены путём спектрального анализа , в момент транзита перед своей звездой.
Аналогия с газовыми гигантами Солнечной системы подходит далеко не для всех экзопланет-гигантов, поскольку большинство известных экзопланет не похожи на Юпитер или Сатурн, и относятся преимущественно к классу « горячий юпитер ». Как указано выше, свойства некоторых экзопланет были изучены напрямую благодаря их прохождению (транзиту) на фоне диска звезды. Изучение одной из таких планет, HD 189733 b , показало, что она с альбедо больше 0,14. Большинство открытых транзитных планет также являются горячими юпитерами.
В Солнечной системе Юпитер и Сатурн , согласно классификации Сударского, оба имеют класс I. Классификация Сударского не распространяется на ледяные планеты (такие как Уран или Нептун , имеющие соответственно 14 и 17 земных масс), « сверхземли » и другие каменистые планеты (примерами которых служат Земля и OGLE-2005-BLG-390L b , которая имеет 5,5 земных масс).
В этом классе у планет доминируют аммиачные облака, и эти планеты находятся во внешних регионах своей звёздной системы. Условием существования для этого класса планет является температура ниже −120 °C. Расчётное альбедо для класса I вокруг звезды-аналога Солнца составляет 0,57. Это заметно выше альбедо Юпитера или Сатурна (соответственно 0,343 и 0,342 ). Разницa объясняется наличием определённых веществ в атмосферах газовых гигантов в Солнечной системе, таких как фосфорные соединения, которые не учитываются в расчётах.
Tемпературы образования планет этого класса планет зависят от наличия слабой звезды ( красный карлик ), либо большого расстояния до звезды. При обращении вокруг Солнца расстояние до звезды должно быть не менее 5 а. е., чтобы планета-гигант могла попасть в этот класс. Если масса планеты достаточно велика, она может самостоятельно разогреваться, и таким образом перейти в другой класс.
В 2000 году не было известно ни одной планеты класса I кроме Юпитера и Сатурна. Позднее были обнаружены экзопланеты, которые могут соответствовать классу I. Это 47 Большой Медведицы c , Мю Жертвенника e , и многие другие.
Поскольку для формирования аммиачных облаков температура газовых гигантов второго класса слишком высокая, она содержит преимущественно водные облака. Температура этих планет должна быть примерно −20 °C, или ниже этого. Водные облака очень хорошо отражают свет, и альбедо водного гиганта может превышать 0,81. Облака на этих планетах во многом похожи на земные, но помимо этого в атмосфере планет много водорода и метана , что сильно отличает атмосферу планет от земной. Планеты этого типа представляют собой газовые гиганты, находящиеся примерно или немного дальше земной орбиты. В Солнечной системе водный гигант должен был бы располагаться на расстоянии примерно немного больше 1,2 а. е. от Солнца . Планеты этого типа в Солнечной системе отсутствуют, а среди экзопланет во II класс включают 47 Большой Медведицы b и Ипсилон Андромеды d (впрочем, последняя в перигелии находится на расстоянии от светила, соответствующем III классу). Также к этому классу относят планету HD 28185 b , поскольку орбита этой планеты находится в центре « зоны жизни ».
Планеты, температура поверхности которых варьирует между 80 °C и примерно 530 °C, лишены облачного покрова, поскольку для образования водных облаков там слишком тепло, и облакам просто не из чего образовываться. Вид этих планет голубо-синий, безликий, похожий на Уран или Нептун . Синий цвет обусловлен наличием метана и рэлеевского рассеяния в атмосфере этих планет.
Планетам присуще сравнительно небольшое альбедо — около 0,12. В Солнечной системе газовый гигант этого типа должен был бы располагаться примерно на месте Меркурия .
В верхней температурной зоне класса III в атмосфере планеты появляются тонкие перистые облака (выше 430 °C) из хлоридов и сульфатов . Типичным представителем этого типа в настоящий момент считается 79 Кита b . Вероятно, планетами этого класса являются Глизе 876 b и Ипсилон Андромеды c .
При повышении температуры газового гиганта свыше 630 °C доминирующим газом в атмосфере становится диоксид углерода (а не метан). Помимо диоксида углерода, атмосфера этих планет состоит во многом из паров щелочных металлов , которые при таких температурах испаряются, что обуславливает наличие их сильных спектральных линий в атмосфере. Облаков в атмосфере этого типа не очень много, и в основном они состоят из паров железа и силикатов, хотя на спектральные линии это заметно не влияет. Альбедо этих планет очень низкое, и составляет около 0,03. Рекордсменом является экзопланета TrES-2 b , альбедо этой экзопланеты составляет менее одного процента, а по наиболее вероятной модели и вовсе лишь 0,04 % (для сравнения, альбедо сажи составляет 1 %). Оно объясняется сильным поглощением света щелочными металлами в атмосфере. Планеты этого класса весьма близки к своим светилам и, как правило, относятся к горячим юпитерам ; так, для Солнца, газовый гигант должен находиться значительно ближе к Солнцу нежели Меркурий (на расстоянии около 0,1 а. е.). Типичным представителем планет этого класса является 55 Рака b . Также к IV классу относятся многие известные горячие юпитеры, например HD 209458 b (Осирис), и другая известная планета этого класса — HD 189733 A b (первая планета, для которой была составлена карта температуры поверхности). Верхняя температурная граница для планет этого класса составляет примерно тысячу градусов по Цельсию .
Очень горячие газовые гиганты, температура которых превышает 1100 °C, или же менее массивные и менее плотные планеты при несколько меньших температурах. Планеты класса « Кремниевые облака» имеют сплошные облака, состоящие из паров железа и силикатов. Благодаря наличию таких облаков альбедо планет достаточно высоко, и составляет 0,55. К V классу относятся известные короткопериодические горячие юпитеры. Такие планеты столь близки к своим звёздам, что не только интенсивно отражают свет звезды, но и сами светятся красно-оранжевым светом. Такие планеты могут быть найдены с помощью земных телескопов, и теоретически могли бы визуально наблюдаться, если звезда, содержащая такую планету, имеет видимый блеск ниже +4,5m. Однако на практике планеты видны не будут, так как их свет будет подавляться блеском материнской звезды . Цвет таких планет зеленовато-серый. Планет такого класса известно довольно много, так как их проще обнаружить. В Солнечной системе планета этого класса должна была бы находиться на расстоянии примерно 0,04 а. е. от Солнца. Самой известной планетой (и первой обнаруженной у обычных, «нормальных» звёзд) этого класса является 51 Пегаса b .