Interested Article - Уравнения Лагранжа второго рода

Уравне́ния Лагра́нжа второ́го ро́да дифференциальные уравнения движения механической системы , получаемые при применении лагранжева формализма .

Вид уравнений

Если голономная механическая система описывается лагранжианом ( обобщённые координаты , t время , точкой обозначено дифференцирование по времени) и в системе действуют только потенциальные силы , то уравнения Лагранжа второго рода имеют вид

,

где i = 1, 2, … n ( n — число степеней свободы механической системы). Лагранжиан представляет собой разность кинетической и потенциальной энергий системы.

При наличии и потенциальных ( ), и непотенциальных ( ) обобщённых сил появляется правая часть:

.

К непотенциальным силам относится, например, сила трения . При этом можно перезаписать уравнения Лагранжа второго рода в несколько иной форме:

,

где кинетическая энергия системы, обобщённая сила .

Вывод уравнений

Уравнения Лагранжа в механике получаются из законов динамики Эйлера (баланса количества движения и момента количества движения) при определённых ограничениях на систему: в ней должны присутствовать лишь идеальные голономные связи. Это частный, хотя и очень важный случай механических систем. Для других случаев получаются модификации уравнений Лагранжа .

Если для рассматриваемой системы актуален принцип наименьшего действия (ему подчиняются далеко не все физические системы), вывод можно провести иначе. В лагранжевой механике вывод уравнений осуществляется на основе данного принципа, гласящего, что действительные движения выделяются из всех мыслимых тем условием, что функционал

,

называемый действием , принимает экстремальное (для достаточно малых - минимальное) значение на траектории действительного движения системы ( и — начальный и конечный моменты времени ) . Применяя к функционалу действия стандартную схему оптимизации, получим для него уравнения Лагранжа — Эйлера , которые и называются уравнениями Лагранжа второго рода для механической системы. Ниже дан вывод уравнения для системы с одной обобщённой координатой и скоростью.

Будем считать, что вариация на границах равна нулю:

.

Изменение действия при переходе из состояния в есть

.

Разлагая эту разность по степеням, получим:

.

Варьируя это выражение, получаем:

.

Замечая, что , проинтегрируем второй член по частям:

.

Первое слагаемое равно нулю исходя из самой первой формулы вывода. Второе слагаемое может быть равно нулю, только если подынтегральное выражение равно нулю. Таким образом, получаем искомое уравнение Лагранжа:

.

См. также

Примечания

  1. Бутенин Б.В. Введение в аналитическую механику. — М.: Наука, 1971. - Тираж 25 000 экз. — С. 56 - 59
  2. Медведев Б.В. Начала теоретической физики. Механика, теория поля, элементы квантовой механики. — М.: Физматлит, 2007. — ISBN 978-5-9221-0770-9 . - Тираж 2 000 экз. — С. 19 - 23
Источник —

Same as Уравнения Лагранжа второго рода