Рентгеновское излучение
- 1 year ago
- 0
- 0
Ви́димое излуче́ние — электромагнитные волны , воспринимаемые человеческим глазом . Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны ( частоты ) излучения, при этом максимум чувствительности приходится на 555 нм (540 Т Гц ), в зелёной части спектра . Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 Т Гц ), а в качестве длинноволновой — 760—780 нм (395—385 ТГц) . Электромагнитное излучение с такими длинами волн также называется видимым излучением , или светом (в узком смысле этого слова).
Не всем цветам , которые различает человеческий глаз , соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный , образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.
Видимое излучение также попадает в « оптическое окно » — область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой . Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.
Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые воспринимают излучение в ультрафиолетовом диапазоне, что помогает им находить нектар в цветах, также они способны различать поляризацию света. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете . Крайне сложно устроенные глаза рака-богомола и вовсе могут различать как ближний ИК, так и ультрафиолетовое излучение, также способны различать и поляризацию.
Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах .
Ньютон первый использовал слово спектр ( лат. spectrum — видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он обнаружил, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.
Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый . Число семь он выбрал из убеждения (происходящего от древнегреческих софистов ), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, ввиду чего некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.
Гёте , в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-жёлтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если достаточно приблизить эти края друг к другу.
Длины волн, соответствующие различным цветам видимого излучения, были впервые представлены 12 ноября 1801 года в Бейкеровской лекции Томасом Юнгом , они получены путём перевода в длины волн параметров колец Ньютона , измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов :30-31 . Юнг представил полученные значения длин волн в виде таблицы, выразив во французских дюймах (1 дюйм = 27,07 мм ) , будучи переведёнными в нанометры , их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий , получив их от видимого излучения Солнца с помощью дифракционной решётки , измерив углы дифракции теодолитом и переведя в длины волн . Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы :39-41 . Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.
В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.
В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует рецепторы трёх различных типов.
При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами . Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице :
Цвет | Диапазон длин волн, нм | Диапазон частот, ТГц | Диапазон энергии фотонов, эВ |
---|---|---|---|
Фиолетовый | 380—450 | 667—789 | 2,75—3,26 |
Синий | 450—480 | 625—667 | 2,58—2,75 |
Голубой | 480—510 | 588—625 | 2,43—2,58 |
Зелёный | 510—550 | 545—588 | 2,25—2,43 |
Салатовый | 550—570 | 526—545 | 2,17—2,25 |
Жёлтый | 570—590 | 508—526 | 2,10—2,17 |
Оранжевый | 590—630 | 476—508 | 1,97—2,10 |
Красный | 630—780 | 384—476 | 1,59—1,97 |
Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения .
Для запоминания последовательности основных цветов радуги в русском языке используется мнемоническая фраза « Каждый охотник желает знать, где сидит фазан ». В английском языке аналогично используется фраза Richard of York gave battle in vain (Red Orange Yellow Green Blue Indigo Violet), в британском английском — акроним Roy G. Biv .
Длина волны, нм | 380 | 780 |
Энергия фотонов , Дж | 5,23⋅10 −19 | 2,55⋅10 −19 |
Энергия фотонов , эВ | 3,26 | 1,59 |
Частота, Гц | 7,89⋅10 14 | 3,84⋅10 14 |
Волновое число , см −1 | 1,65⋅10 5 | 0,81⋅10 5 |