Interested Article - Критерий согласия Пирсона

Критерий согласия Пирсона или критерий согласия (хи-квадрат) — непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

Является наиболее часто употребляемым критерием для проверки гипотезы о принадлежности наблюдаемой выборки объёмом некоторому теоретическому закону распределения .

Критерий хи-квадрат для анализа таблиц сопряжённости был разработан и предложен в 1900 году основателем математической статистики английским учёным Карлом Пирсоном .

Критерий может использоваться при проверке простых гипотез вида

где известный вектор параметров теоретического закона, и при проверке сложных гипотез вида

когда оценка скалярного или векторного параметра распределения вычисляется по той же самой выборке.

Статистика критерия

Процедура проверки гипотез с использованием критериев типа предусматривает группирование наблюдений. Область определения случайной величины разбивают на непересекающихся интервалов граничными точками

где — нижняя грань области определения случайной величины; — верхняя грань.

В соответствии с заданным разбиением подсчитывают число выборочных значений, попавших в -й интервал, и вероятности попадания в интервал

соответствующие теоретическому закону с функцией распределения

При этом

и

При проверке простой гипотезы известны как вид закона , так и все его параметры (известен скалярный или векторный параметр ).

В основе статистик, используемых в критериях согласия типа , лежит измерение отклонений от .

Статистика критерия согласия Пирсона определяется соотношением

В случае проверки простой гипотезы, в пределе при эта статистика подчиняется -распределению с степенями свободы, если верна проверяемая гипотеза . Плотность -распределения, которое является частным случаем гамма-распределения , описывается формулой

Проверяемая гипотеза отклоняется при больших значениях статистики, когда вычисленное по выборке значение статистики больше критического значения

или достигнутый уровень значимости ( p -значение ) меньше заданного уровня значимости (заданной вероятности ошибки 1-го рода ) .

Проверка сложных гипотез

При проверке сложных гипотез, если параметры закона по этой же выборке оцениваются в результате минимизации статистики или по сгруппированной выборке методом максимального правдоподобия , то статистика при справедливости проверяемой гипотезы подчиняется -распределению с степенями свободы, где — количество оценённых по выборке параметров.

Если параметры оцениваются по исходной негруппированной выборке, то распределение статистики не будет являться -распределением . Более того, распределения статистики при справедливости гипотезы будут зависеть от способа группирования, то есть от того, как область определения разбивается на интервалы .

При оценивании методом максимального правдоподобия параметров по негруппированной выборке можно воспользоваться модифицированными критериями типа .

О мощности критерия

При использовании критериев согласия, как правило, не задают конкурирующих гипотез: рассматривается принадлежность выборки конкретному закону, а в качестве конкурирующей гипотезы — принадлежность любому другому. Естественно, что критерий по-разному будет способен отличать от закона, соответствующего , близкие или далёкие от него законы. Если задать конкурирующую гипотезу и соответствующий ей некоторый конкурирующий закон , то можно рассуждать уже об ошибках двух видов: не только об ошибке 1-го рода (отклонении проверяемой гипотезы при её справедливости) и вероятности этой ошибки , но и об ошибке 2-го рода (неотклонении при справедливости ) и вероятности этой ошибки .

Мощность критерия по отношению к конкурирующей гипотезе характеризуется величиной . Критерий тем лучше распознаёт пару конкурирующих гипотез и , чем выше его мощность.

Мощность критерия согласия Пирсона существенно зависит от способа группирования и от выбранного числа интервалов .

При асимптотически оптимальном группировании, при котором максимизируются различные функционалы от информационной матрицы Фишера по группированным данным (минимизируются потери, связанные с группированием), критерий согласия Пирсона обладает максимальной мощностью относительно «(очень) близких» конкурирующих гипотез .

При проверке простых гипотез и использовании асимптотически оптимального группирования критерий согласия Пирсона имеет преимущество в мощности по сравнению с непараметрическими критериями согласия. При проверке сложных гипотез мощность непараметрических критериев возрастает и такого преимущества нет . Однако для любой пары конкурирующих гипотез (конкурирующих законов) за счёт выбора числа интервалов и способа разбиения области определения случайной величины на интервалы можно максимизировать мощность критерия .

См. также

Примечания

  1. Chernoff H., Lehmann E. L. (англ.) // The Annals of Mathematical Statistics. — 1954. — Vol. 25 . — P. 579—586 .
  2. Лемешко Б. Ю., Постовалов С. Н. // Заводская лаборатория. — 1998. — Т. 64 , вып. 5 . — С. 56-63 . 24 мая 2015 года.
  3. Никулин М. С. Критерий хи-квадрат для непрерывных распределений с параметрами сдвига и масштаба // Теория вероятностей и её применение. — 1973. — Т. XVIII , вып. 3 . — С. 583—591 .
  4. Никулин М. С. О критерии хи-квадрат для непрерывных распределений // Теория вероятностей и её применение. — 1973. — Т. XVIII , вып. 3 . — С. 675—676 .
  5. Rao K. C., Robson D. S. A chi-squared statistic for goodness-of-fit tests within the exponential family (англ.) // Commun. Statist. — 1974. — Vol. 3 . — P. 1139—1153 .
  6. Greenwood P. E., Nikulin M. S. A guide to chi-squared testing (англ.) . — New York: John Wiley & Sons, 1996. — 280 p.
  7. Лемешко Б. Ю. // Заводская лаборатория. — 1998. — Т. 64 , вып. 1 . — С. 56—64 . 29 октября 2013 года.
  8. . — М. : Изд-во стандартов, 2006. — 87 с. 30 сентября 2021 года.
  9. Лемешко Б. Ю., Чимитова Е. В. // Заводская лаборатория. Диагностика материалов. — 2003. — Т. 69 , вып. 1 . — С. 61—67 . 6 сентября 2007 года.
  10. Денисов В. И., Лемешко Б. Ю. Оптимальное группирование при обработке экспериментальных данных // Измерительные информационные системы. — Новосибирск, 1979. — С. 5—14.
  11. Лемешко Б. Ю., Лемешко С. Б., Постовалов С. Н. // Сибирский журнал индустриальной математики. — 2008. — Т. 11 , вып. 2(34) . — С. 96—111 . 29 октября 2013 года.
  12. Лемешко Б. Ю., Лемешко С. Б., Постовалов С. Н. // Сибирский журнал индустриальной математики. — 2008. — Т. 11 , вып. 4(36) . — С. 78—93 . 29 октября 2013 года.
  13. Лемешко Б. Ю., Лемешко С. Б., Постовалов С. Н., Чимитова Е. В. . — Новосибирск: Изд-во НГТУ, 2011. — 888 с. — (Монографии НГТУ). — ISBN 978-5-7782-1590-0 . 29 октября 2013 года. — Раздел 4.9.

Литература

  • Кендалл М., Стьюарт А. Статистические выводы и связи. — М. : Наука, 1973.

См. также

Ссылки

Источник —

Same as Критерий согласия Пирсона