Interested Article - Проверка статистических гипотез

Проверка статистических гипотез является содержанием одного из обширных классов задач математической статистики .

Статистическая гипотеза гипотеза о виде распределения и свойствах случайной величины , которую можно подтвердить или опровергнуть применением статистических методов к данным выборки .

Статистические гипотезы

Определения

Пусть в (статистическом) эксперименте доступна наблюдению случайная величина , распределение которой полностью или частично неизвестно. Тогда любое утверждение относительно называется статистической гипотезой . Гипотезы различают по виду предположений, содержащихся в них:

  • Статистическая гипотеза, однозначно определяющая распределение , то есть , где — какой-то конкретный закон, называется простой .
  • Статистическая гипотеза, утверждающая принадлежность распределения к некоторому семейству распределений, то есть вида , где — семейство распределений, называется сложной .

На практике обычно требуется проверить какую-то конкретную и, как правило, простую гипотезу . Такую гипотезу принято называть нулевой . При этом параллельно рассматривается противоречащая ей гипотеза , называемая конкурирующей или альтернативной .

Выдвинутая гипотеза нуждается в проверке, которая осуществляется статистическими методами, поэтому гипотезу называют статистической. Для проверки гипотезы используют критерии , позволяющие принять или опровергнуть гипотезу.

В большинстве случаев статистические критерии основаны на случайной выборке фиксированного объема для распределения . В последовательном анализе выборка формируется в ходе самого эксперимента и потому её размер является случайной величиной (см. Последовательный статистический критерий ).

Пример

Пусть дана независимая выборка из нормального распределения , где — неизвестный параметр. Тогда , где — фиксированная константа , является простой гипотезой, а конкурирующая с ней — сложной.

Этапы проверки статистических гипотез

  1. Формулировка основной гипотезы и конкурирующей гипотезы .
  2. Задание уровня значимости , на котором в дальнейшем и будет сделан вывод о справедливости гипотезы. Он равен вероятности допустить ошибку первого рода .
  3. Расчёт статистики критерия такой, что:
    • её величина зависит от исходной выборки ;
    • по её значению можно делать выводы об истинности гипотезы ;
    • статистика , как функция случайной величины , также является случайной величиной и подчиняется какому-то закону распределения .
  4. Построение критической области. Из области значений выделяется подмножество таких значений, по которым можно судить о существенных расхождениях с предположением. Его размер выбирается таким образом, чтобы выполнялось равенство . Это множество и называется критической областью .
  5. Вывод об истинности гипотезы. Наблюдаемые значения выборки подставляются в статистику и по попаданию (или непопаданию) в критическую область выносится решение об отвержении (или не отвержении) выдвинутой гипотезы .

Виды критической области

Выделяют три вида критических областей:

  • Двусторонняя критическая область определяется двумя интервалами , где находят из условий .
  • Левосторонняя критическая область определяется интервалом , где находят из условия .
  • Правосторонняя критическая область определяется интервалом , где находят из условия .

См. также

Примечания

  1. Ивановский Р. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде Mathcad. — 528 с. — (Учебное пособие). — ISBN 978-5-9775-0199-6 .

Литература

Источник —

Same as Проверка статистических гипотез