Interested Article - Серебряное сечение

Сере́бряное сече́ние математическая константа , выражающая некоторое геометрическое соотношение, выделяемое эстетически . В отличие от золотого сечения , по аллюзии с которым оно названо, серебряное сечение не имеет единого определения. Наиболее последовательным является следующее:

  1. Две величины находятся в «серебряном сечении», если отношение суммы меньшей и удвоенной большей величины к большей равно отношению большей величины к меньшей:
, где a - большее число, b - меньшее число.
  1. Серебряное сечение — иррациональное (но алгебраическое ) число, равное или приблизительно 2,4142135623. Для использования в процентном делении используется отношение, близкое к этому числу, — 71/29 .

В последнее время некоторые художники и архитекторы считают это отношение «красивым». Возможно, они опираются на теорию . Математики исследовали серебряное соотношение со времён древнегреческой науки (хотя такое название, возможно, появилось только недавно), так как оно связано с квадратным корнем из 2 , его подходящими дробями , квадратными треугольными числами , числами Пелля , восьмиугольником и др.

Обозначим далее серебряное сечение через (общепринятого обозначения нет). Соотношение, описанное в определении выше, записывается алгебраически так:

Это уравнение имеет единственный положительный корень.

Геометрическое доказательство, что корень из двух — иррационален .

Формулы

  • . Это следует из

подходящие дроби этой непрерывной дроби (2/1, 5/2, 12/5, 29/12, 70/29, …) являются отношениями последовательных чисел Пелля . Эти дроби дают хорошие рациональные аппроксимации серебряного сечения, аналогично тому, что золотое сечение приближается отношениями последовательных чисел Фибоначчи .

В виде бесконечных вложенных радикалов:

  • .
  • .

Другие определения

Встречаются и другие определения серебряного сечения .

Например, отталкиваясь от определения золотого сечения через цепную дробь, серебряными называют любые цепные дроби, в которых знаменатели постоянны:

.

Литература

  • Аракелян Г. Б. Числа и величины в современной физике. Ереван: Изд. АН, 1989, 300 с. — С. 90-95, 252.

Примечания

  1. . Дата обращения: 16 февраля 2015. 24 сентября 2015 года.

Ссылки

Источник —

Same as Серебряное сечение