Interested Article - Дифференциальная алгебра

Дифференциальными кольцами , полями и алгебрами называются кольца , поля и алгебры , снабжённые дифференцированием — унарной операцией, удовлетворяющей правилу произведения . Естественный пример дифференциального поля — поле рациональных функций одной комплексной переменной , операции дифференцирования соответствует дифференцирование по . Теория создана Джозефом Риттом (1950) и его учеником .

Определения

Дифференциальные кольца

Дифференциальное кольцо — это кольцо R , снабжённое одним или несколькими эндоморфизмами ( дифференцированиями )

удовлетворяющими правилу произведения

для любых . Подчеркнем, что в некоммутативном кольце правило может не выполняться. В безындексной форме записи, если — умножение в кольце, то правило произведения примет вид

где — отображение пары в пару .

Дифференциальные поля

Дифференциальное поле — это поле K , снабжённое дифференцированием. Дифференцирование должно подчиняться правилу Лейбница в форме

так как умножение в поле коммутативно. Дифференцирование также должно быть дистрибутивно относительно сложения:

Полем констант дифференциального поля называется .

Дифференциальная алгебра

Дифференциальной алгеброй над полем K называется K -алгебра A , в которой дифференцирования коммутируют с полем. То есть для любых и :

В безындексной форме записи, если — морфизм колец, определяющий умножение на скаляры в алгебре, то

Как и в остальных случаях, дифференцирование должно удовлетворять правилу Лейбница относительно умножения в алгебре и быть линейным относительно сложения. То есть для любых и :

и

Дифференцирование в алгебре Ли

Дифференцирование алгебры Ли — это линейное отображение , удовлетворяющее правилу Лейбница:

Для любого оператор — дифференцирование на , что следует из тождества Якоби . Любое такое дифференцирование называется внутренним .

Примеры

Если алгебра с единицей , то , так как . Например, в дифференциальных полях характеристики 0 рациональные элементы образуют подполе в поле констант.

Любое поле можно рассматривать как поле констант.

В поле существует естественная структура дифференциального поля, определяемая равенством : из аксиом поля и дифференцирования следует, что это будет дифференцирование по . Например, из коммутативности умножения и правила Лейбница следует, что

В дифференциальном поле нет решения дифференциального уравнения , но можно расширить его до поля, содержащего функцию , имеющего решение этого уравнения.

Дифференциальное поле, имеющее решение для любой системы дифференциальных уравнений, называется . Такие поля существуют, хотя они и не возникают естественным образом в алгебре или геометрии. Любое дифференциальное поле (ограниченной мощности ) вкладывается в большее дифференциально замкнутое поле. Дифференциальные поля изучаются в дифференциальной теории Галуа .

Естественные примеры дифференцирований — частные производные , производные Ли , и коммутатор относительно заданного элемента алгебры. Все эти примеры тесно связаны общей идеей дифференцирования.

Кольцо псевдодифференциальных операторов

Дифференциальные кольца и дифференциальные алгебры часто изучаются с помощью кольца над ними:

Умножение в этом кольце определяется как

Здесь биномиальный коэффициент . Отметим тождество

следующее из

и

Градуированное дифференцирование

Пусть градуированная алгебра , — однородное линейное отображение, . называется однородной производной , если , при действии на однородные элементы . Градуированная производная — это сумма однородных производных с одинаковым .

Если , определение совпадает с обычным дифференцированием.

Если , то , для нечётных . Такие эндоморфизмы называются антипроизводными .

Примеры антипроизводных — внешняя и внутренняя производная дифференциальных форм .

Градуированные производные (то есть -градуированных алгебр) часто называются суперпроизводными .

Примечания

  1. Ritt, Joseph Fels (1950). Differential Algebra. New York: AMS Colloquium Publications (volume 33).
  2. Kolchin, E. R. (1985), , Pure and Applied Mathematics, vol. 114, Boston, MA: Academic Press , ISBN 978-0-12-417640-9 , MR

См. также

Литература

  • Buium Differential Algebra and Diophantine Geometry, — Hermann (1994).
  • И. Капланский Дифференциальная алгебра, — Hermann (1957).
  • Е. Колчин Дифференциальная алгебра и алгебраические группы, — 1973.
  • Д. Маркер Теория моделей для дифференциальных полей, Теория моделей полей, Lecture notes in Logic 5, D. Marker, M. Messmer and A. Pillay, Springer Verlang (1996).
  • А. Магид Лекции по дифференциальной теории Галуа, — Американское мат. общество, 1994.
  • содержит несколько статей о дифференциальных полях.
Источник —

Same as Дифференциальная алгебра