Interested Article - Теорема Лежандра

Теорема Лежандра — утверждение об условиях существования решений для некоторого подкласса квадратичных диофантовых уравнений , установленное Лежандром в 1785 году .

Формулировка

Уравнение

у которого не все коэффициенты одного знака и — попарно взаимно простые числа , имеет нетривиальное решение в целых числах тогда и только тогда, когда:

  • квадратичный вычет по модулю ,
  • — квадратичный вычет по модулю ,
  • — квадратичный вычет по модулю .

О доказательстве

Необходимость этих условий очевидна, достаточность следует из теоремы Минковского — Хассе для квадратичных форм : квадратичная форма представляет нуль в тогда и только тогда, когда она представляет нуль в и во всех полях -адических чисел . Для разрешимости в нужны разные знаки, для разрешимости в для — вышеприведённые симметричные соотношения.

Литература

  • Боревич З. И., Шафаревич И. Р. Теория чисел. — М. : Наука, 1985. — С. 77-80. — 504 с.
Источник —

Same as Теорема Лежандра