Космическая струна
- 1 year ago
- 0
- 0
Бозо́нная струна́ — один из основных объектов изучения теории струн .
Термин возник в результате нескольких событий конца 1960-х и начала 1970-х годов, а именно: в физике элементарных частиц , при исследовании рассеивания адронов ; в теоретической физике , в результате исследования спектров рассеивания адронов, а также в результате обобщения динамики квантовой релятивистской частицы на протяжённый объект .
Попытки обобщить квантовую теорию поля , имеющую дело с «точечными» возбуждениями вакуума предпринимались и раньше, ещё с 1930-х годов, однако нелокальность протяжённых объектов смущала, так как автоматически давала неперенормируемые бесконечности в вычислениях (это было похоже по сложности на решения асимптотических и экстремальных задач по классической и квантовой оптике для «светящихся отрезков»). Проблемы квантования электродинамики, позже объединение слабых и электромагнитных сил, множество задач ядерной физики — отвлекало от обобщения, однако именно ядерная физика, по случаю, привела к рождению струнных теорий. В 1968 году, штурмуя амплитуды рассеивания в адронной физике, Габриэле Венециано просто постулировал некоторую формулу, которая немедленно была ассоциирована с релятивистской упругой струной.
Точно также как «физическая точка», в геометрическом смысле, эволюционирует в некоторую траекторию — мировой путь — дерево — петли, одномерный физический объект заметает в пространстве-времени некоторую поверхность, при наличии взаимодействия весьма сложного вида, с границами, разрезами, вставками, особенностями (складками, проектированиями) и т. д. И именно эта мировая поверхность взаимодействий имеет главный физический смысл.
С точки зрения физики, нам необходимо получить инвариантные величины, то есть такие, чтобы не зависели от нашего произвольного координатного выбора. Одним из инвариантов является величина действия , для струны просто пропорциональное площади поверхности, заметаемой ей. Как бы мы теперь не параметризовали координаты струны (R-инвариантность), площадь поверхности, заметаемой упругой струной должна оставаться минимальной. В большинстве случаев мы вряд ли надеемся на 0 вариацию действия, однако, динамически система взаимодействующих струн всегда будет стремиться минимизировать общую поверхность распространения.
Вышенаписанное действие известно, как действие Намбу — Гото, оно геометрическое и связано с 2-й формой поверхностей в R(n). Его нелинейность очевидна. Чтобы сделать это действие «более линейным» А.Поляковым была предложена схема связи вложения струны с введением 2-мерной метрики в D-мерное пространство-время. С точки зрения 1+1 поверхности П-В есть просто D скалярных функций(полей), однако, если продолжать настаивать, что физическая интерпретация действия Полякова D-мерная, то 2-мерная метрика превратится во вспомогательные функции, обеспечивающие некоторый необходимый набор инвариантностей, эквивалентный действию Намбу — Гото.
Общее описание бозонной струны теперь не представляет трудностей. Необходимо использовать инвариантности в действии Полякова(связь теории струн с конформной теорией поля), чтобы минимизировать или обнулить компоненты тензора энергии-импульса, тогда все уравнения движения станут гармоническими и как следствие разложение по Фурье модам целочисленными.
Собственно это и есть бозонная струна с бесконечным спектром возбуждений, с бозонными осцилляторами.
Однако некоторые формулы верные в классическом анализе, перестают быть верными на квантовом уровне. Эта проблема известна как проблема нормального упорядочения матричных элементов некоммутирующей алгебры операторов. Результат более детального анализа на квантовом уровне приводит к критической размерности существования бозонной струны D=26, а также к наличию в основном состоянии бозонной струны метастабильного состояния, известного в физике как тахион.