Interested Article - Троичный компьютер

Трои́чный компью́тер компьютер , построенный на двоичных и троичных логических элементах и узлах , работающий в двоичной и троичной системе счисления по законам двоичной и троичной логики с применением двоичных и .

История

Леонардо Пизанский ( Фибоначчи )
Трёхуровневая 3-тритная цифровая компьютерная система TCA2
  • 2008 г. (14 марта — 24 мая), Джефф Коннелли ( англ. Jeff Connelly ), Кираг Патель ( англ. Chirag Patel ) и Антонио Чавез ( англ. Antonio Chavez ) при поддержке профессора Филлипа Нико ( англ. Phillip Nico ) ( , , Калифорния , США ) построили трёхтритную цифровую компьютерную систему TCA2, версия v2.0 , в трёхуровневой (3-Level LevelCodedTernary, 3L LCT, «однопроводной») системе троичных логических элементов на 1484-х интегральных транзисторах.

Преимущества троичных ЭВМ (компьютеров)

Троичные ЭВМ (компьютеры) обладают рядом преимуществ по сравнению с двоичными ЭВМ (компьютерами).

При сложении тритов в троичных полусумматорах и в троичных сумматорах количество сложений в раза меньше, чем при сложении битов в двоичных полусумматорах и в двоичных сумматорах, и, следовательно, быстродействие при сложении в 1,58.. раза (на 58 %) больше.

При применении симметричной троичной системы счисления и сложение, и вычитание производится в одних и тех же двухаргументных (двухоперандных) полусумматорах-полувычитателях или полных трёхаргументных (трёхоперандных) сумматорах-вычитателях без преобразования отрицательных чисел в дополнительные коды , то есть ещё немного быстрее, чем в двоичных полусумматорах и в двоичных полных сумматорах, в которых для вычитания используется сложение с двумя преобразованиями отрицательных чисел, сначала в первое дополнение , а затем во второе дополнение , то есть два дополнительных действия («инверсия» и «+1») на каждое отрицательное слагаемое.

Сложение сильно тормозят переносы, которые в двоичном сумматоре возникают в 4 случаях из 8 (в 50 % случаев), в троичном несимметричном сумматоре возникают в 9 случаях из 18 (в 50 % случаев), а в троичном симметричном сумматоре в 8 случаях из 27 (в 29,6…% случаев), что ещё немного увеличивает быстродействие при применении троичных симметричных сумматоров.

3-битная троичная физическая система кодирования и передачи данных 3B BCT имеет на 15,3 % большее быстродействие, чем обычная двоичная система кодирования и передачи данных , что ещё немного увеличивает быстродействие.

3-битная троичная физическая система кодирования троичных данных 3B BCT избыточна (используются только 3 кода из 8), что позволяет обнаружить ошибки и повысить надёжность изделия.

В сумме, приблизительно в 2 раза большее увеличение быстродействия в изделиях долговременного применения может окупить приблизительно в 1,5 раза большие единовременные затраты на аппаратную часть. В некоторых изделиях одноразового применения увеличение быстродействия и надёжности может перевесить увеличение затрат на аппаратную часть.

Кроме этого, вместо 4 унарных, 16 бинарных и 256 тринарных двоичных логических функций в троичных ЭВМ появляются 27 унарных, 19 683 бинарных и 7 625 597 484 987 тринарных (трёхоперандных) троичных логических функций , которые намного мощнее бинарных. Увеличение «логической мощности» в неизвестное число раз, может в 19 683/16 = 1230 раз, а может в 7 625 597 484 987/256 = 29 787 490 175 раз (нет методики сравнения «логических мощностей»), но намного, может увеличить «логическую мощность» даже медленнодействующих физических систем кодирования и передачи данных, в том числе и трёхуровневой (3-Level LevelCodedTernary (3L LCT), «однопроводной»).

Подобно тому, как в двоичных ЭВМ деление на 2 осуществляется для целых чисел операцией сдвига кода на 1 разряд вправо, а для чисел в виде мантиссы и экспоненты (с плавающей запятой) вычитанием 1 из экспоненты, в троичных ЭВМ для целых чисел операцией сдвига кода на 1 разряд вправо, а для чисел в виде мантиссы и экспоненты (с плавающей запятой) вычитанием из экспоненты 1 производится деление на 3. Из-за этого свойства троичные алгоритмы, а некоторые троичные алгоритмы работают быстрее двоичных алгоритмов, работают на троичных ЭВМ быстрее, чем на двоичных ЭВМ, что ещё немного увеличивает скорость решения некоторых задач, особенно имеющих троичность, на троичных ЭВМ.

В троичной системе знак числа может иметь все три значения: «-», «0» и «+», то есть лучше используется троичная суть знака числа. Это можно сделать и в двоичной системе, но в двоичной системе потребуется два двоичных разряда (бита) на знак числа [ прояснить ] , а в троичной системе только один троичный разряд (трит).

Может быть, что на первых порах пакеты прикладных программ с применением более мощной, чем двоичная логика, троичной логики, особенно в задачах имеющих троичность (обработка RGB-изображений, трёхкоординатные (объёмные) x, y, z-задачи и др.) позволит существенно сократить время решения многих троичных задач на обычных двоичных компьютерах (двоичная эмуляция троичных эвм и троичной логики на двоичных компьютерах).

Удельное натуральнологарифмическое число кодов (чисел) (плотность записи информации) описывается уравнением , где — основание системы счисления . Из уравнения следует, что наибольшей плотностью записи [ неизвестный термин ] информации обладает система счисления с основанием, равным основанию натуральных логарифмов , то есть равным числу Эйлера е =2,71… Эту задачу решали ещё во времена Непера при выборе основания для логарифмических таблиц .

При хранении чисел троичная система более экономична по количеству используемых знаков, чем двоичная и десятичная. Также троичная логика совместима с двоичной . Однако, в случае создания компьютера на троичной логике, который был бы полностью аналогичен существующим двоичным (и имел бы дополнительные преимущества повышенной интенсивности обработки информации и разработки в области обеспечения синхронизации процессов), то такой компьютер должен был бы быть совместим с двоичными, чтобы обмениваться с ними информацией.

Элементы троичных ЭВМ (компьютеров)

Известны троичные элементы следующих видов:

Импульсные

Потенциальные

Трёхуровневые

  • В трёхуровневых потенциальных линиях передачи цифровых данных (3-Level CodedTernary, 3L CT, «однопроводных») трём устойчивым состояниям соответствуют три уровня напряжения (положительное, нулевое, отрицательное), (высокое, среднее, низкое) . Имеют меньшее итоговое быстродействие, чем обычная двоичная система .

Амплитуда наибольшего сигнала помехи равной помехоустойчивости с двухуровневыми элементами не более (+/-)Uп/6 (16,7 % от Uп), при делении всего диапазона напряжений на три равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

Недостатки:

  1. необходимость, для равной помехоустойчивости с обычной двоичной системой, увеличения размаха сигнала в 2 раза,
  2. неодинаковость среднего состояния с верхним и нижним состояниями,
  3. неодинаковость амплитуд переходов из крайних состояний в среднее (одинарная амплитуда) и переходов из одного крайнего состояния в другое крайнее состояние (двойная амплитуда).

Двухуровневые

Амплитуда наибольшего сигнала помехи не более (+/-)Uп/4 (25 % от Uп), при делении всего диапазона напряжений на две равные части и номинальных напряжениях сигналов в срединах поддиапазонов.

  • Двухуровневые, потенциальные (2-Level BinaryCodedTernary, 2L BCT), в которых логические элементы ( инверторы ) имеют два устойчивых состояния с двумя уровнями напряжения (высокое, низкое), а троичность работы достигается системой обратных связей ( троичный триггер ) . Амплитуда сигнала помехи до Uп/2 (до 50 % от Uп).

Двухбитные

  • Двухуровневые двухбитные (2-Level 2-Bit BinaryCodedTernary, 2L 2B BCT, «двухпроводные») .

Недостатки:

1. два провода на один разряд.

Трёхбитные

  • Двухуровневые трёхбитные (2-Level 3-Bit BinaryCodedTernary, 2L 3B BCT, «трёхпроводные») . По скорости равны троичным двухуровневым двухбитным триггерам. По сравнению с обычными двоичными RS-триггерами увеличивают объём хранимых и передаваемых данных в 1,5 раза на один разряд, но и аппаратные затраты тоже увеличиваются. Быстродействие выше, чем в обычной двоичной системе, но ниже, чем в четверичной четырёхбитной системе, но аппаратные затраты растут меньше, чем в четверичной четырёхбитной системе. Из-за избыточности трёхбитного кода появляется возможность обнаружения одиночных однобитных ошибок на аппаратном уровне, что может оказаться полезным в устройствах повышенной надёжности и может найти применение в устройствах, в которых надёжность и быстродействие являются более значимыми параметрами, чем аппаратные затраты.

Недостатки:

1. три провода на один разряд.

Смешанные

  • Смешанные, в которых вход данных трёхуровневый по одной линии и земле, а выход данных двухуровневый по трём линиям и земле.

Узлы троичных ЭВМ

Полный троичный тринарный (трёхоперандный) одноразрядный сумматор является неполной троичной логической тринарной (трёхоперандной) функцией.

Будущее

Дональд Кнут отмечал, что из-за массового производства двоичных компонентов для компьютеров троичные компьютеры занимают очень малое место в истории вычислительной техники. Однако троичная логика элегантнее и эффективнее двоичной и в будущем, возможно, вновь вернутся к её разработке .

В работе [Jin, He, Lü 2005] возможным путём считают комбинацию оптического компьютера с троичной логической системой. По мнению авторов работы, троичный компьютер, использующий волоконную оптику, должен использовать три величины: 0 или ВЫКЛЮЧЕНО, 1 или НИЗКИЙ, 2 или ВЫСОКИЙ, то есть трёхуровневую систему. В работе же [Куликов А. С.] автор пишет, что более быстродействующей и более перспективной является трёхчастотная система с тремя величинами: (f1,f2,f3) равными «001» = «0», «010» = «1» и «100» = «2», где 0 — частота выключена, а 1 — частота включена.

Будущий потенциал троичной вычислительной техники был также отмечен компанией , которая активно участвует в её изучении. IBM в своих публикациях также сообщает о троичной вычислительной технике, но активно в этом направлении не участвует.

См. также

Примечания

  1. D. C. Rine (ed.), Computer Science and Multiple-Valued Logic. Theory and Applications. Elsevier, 1977, 548p. ISBN 9780720404067
  2. от 31 октября 2010 на Wayback Machine . Mузей Гармонии и Золотого Сечения.
  3. . Дата обращения: 22 июля 2012. 1 июля 2014 года.
  4. от 11 июня 2008 на Wayback Machine . Mузей Гармонии и Золотого Сечения
  5. . Дата обращения: 22 июля 2012. 1 июля 2014 года.
  6. от 14 октября 2018 на Wayback Machine .
  7. . Дата обращения: 7 ноября 2008. 16 мая 2014 года.
  8. . Дата обращения: 21 июля 2012. 2 октября 2014 года.
  9. Брусенцов Н. П. // Международная конференция SORUCOM. — 2006. 11 июня 2009 года.
  10. Брусенцов Н. П. Электромагнитные цифровые устройства с однопроводной передачей трёхзначных сигналов // Магнитные элементы автоматики и вычислительной техники. XIV Всесоюзное совещание (Москва, сентябрь 1972 г.). — Москва: Наука, 1972. — С. 242—244.
  11. . Дата обращения: 22 июля 2012. 10 февраля 2017 года.
  12. . Дата обращения: 29 октября 2017. 13 ноября 2015 года.
  13. . Дата обращения: 20 июля 2012. 4 марта 2016 года.
  14. . Дата обращения: 29 июля 2016. 16 августа 2016 года.
  15. . Дата обращения: 28 октября 2015. 29 октября 2018 года.
  16. . Популярная механика . Дата обращения: 25 августа 2021. 25 августа 2021 года.
  17. от 2 февраля 2014 на Wayback Machine МГУ — не конкурент, а колыбель науки или о том, что в информационном обществе нельзя без Аристотеля. Н. П. Брусенцов. О «Сетуни», её разработках, производстве
  18. от 2 февраля 2014 на Wayback Machine АКАДЕМИЯ ТРИНИТАРИЗМА. Дмитрий Румянцев. Долой биты! (Интервью с конструктором троичной ЭВМ)
  19. Дата обращения: 17 декабря 2008. 7 октября 2013 года.
  20. . Дата обращения: 20 марта 2009. Архивировано из 31 января 2009 года.
  21. . Дата обращения: 7 марта 2016. 8 марта 2016 года.
  22. . Дата обращения: 29 июля 2016. 21 ноября 2015 года.
  23. от 27 июня 2009 на Wayback Machine Троичные триггеры на двоичных логических элементах
  24. . Дата обращения: 29 июля 2016. 16 августа 2016 года.
  25. . Дата обращения: 13 ноября 2008. Архивировано из 16 сентября 2008 года.
  26. D.E. Knuth, The Art of Computer Programming — Volume 2: Seminumerical Algorithms, pp. 190—192. Addison-Wesley, 2nd ed., 1980. ISBN 0-201-03822-6 .

Ссылки

  • (недоступная ссылка с 13-05-2013 [3941 день] — )
  • — команда, которая в 2004 г., в Catholic University of Louvain-La-Neuve (UCL) ( Франция ), выпустила первые полностью троичные микросхемы (64-term SRAM и 4-term сумматор ).
  • // Infuture.ru
  • (недоступная ссылка) [ неавторитетный источник ]
  • [lib.ru/MEMUARY/MALINOWSKIJ/8.htm Творец троичной ЭВМ]
  • (недоступная ссылка)
Источник —

Same as Троичный компьютер