Interested Article - Список простых чисел

Эта страница содержит список первых 500 простых чисел (от 2 до 3571) , а также списки некоторых специальных типов простых чисел.

Первые простые числа

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 61 71
73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 163 173
179 181 193 197 199 227 233 239 257
283 317 337 353
421
563
683 709
953
1103 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571

(последовательность в OEIS ).

Проект по проверке проблемы Гольдбаха сообщает, что были вычислены все простые числа до . Это составляет 24 739 954 287 740 860 простых чисел, но они не были сохранены. Существуют известные формулы , позволяющие вычислить количество простых чисел (до заданного значения) быстрее, чем вычисление самих простых чисел. Этот способ был использован, чтобы вычислить, что до находится 1 925 320 391 606 803 968 923 простых числа.

Простые числа Белла

Простые числа, которые являются числом разбиения множества с элементами.

2, 5, 877, 27644437, 35742549198872617291353508656626642567,. Следующее число имеет 6539 цифр . (последовательность в OEIS )

Кубические простые числа

Простые числа вида

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (последовательность в OEIS ).

а также

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249

(последовательность в OEIS ).

Суперпростые числа

Простые числа, находящиеся на позициях последовательности простых чисел с простыми номерами, то есть 2-е, 3-е, 5-е и т. д.

Первые члены последовательности суперпростых чисел: 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, … Последовательность

Простые, состоящие из единиц

Числа-репьюниты, состоящие из 19, 23, 317, 1031, 49081, 86453, 109297, 270343 единиц, являются простыми (последовательность в OEIS ).

Простые, состоящие из единиц и нулей

Кроме простых чисел, состоящих только из единиц, можно отметить и простые числа, состоящие из единиц и нулей. В пределах первых десяти миллионов простыми являются следующие из таких чисел (последовательность в OEIS ):

11, 101, 10111, 101111, 1011001, 1100101 и т. д.

Простые палиндромы

Палиндромами называются числа, которые справа налево и слева направо читаются одинаковым образом, например, 30103. Среди таких чисел тоже встречаются простые. Ясно, что любой простой палиндром состоит из нечётного количества цифр (за исключением числа 11), так как любой палиндром с чётным количеством цифр всегда делится на 11. Первыми простыми палиндромами являются такие числа:

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601

Простые числа Вильсона

Простые числа , для которых делится нацело на .

Известные простые Вильсона: 5, 13, 563 (последовательность в OEIS ).

Другие простые Вильсона неизвестны. Гарантированно не существует других простых Вильсона, меньших 2⋅10 13 .

Простые числа Вольстенхольма

Простые числа , для которых биномиальный коэффициент .

Известны только эти числа до миллиарда: 16843, 2124679 (последовательность в OEIS )

Простые числа Кэрола

Простые числа вида .

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (последовательность в OEIS ).

Простые числа Каллена

Простые числа вида .

Все известные числа Каллена соответствуют , равному:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881 последовательность в OEIS .

Есть предположение, что имеется бесконечно много простых чисел Каллена.

Простые числа Маркова

Простые числа , для которых существуют целые и такие, что .

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (последовательность в OEIS )

Простые числа Мерсенна

Простые числа вида . Первые 12 чисел:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647 , 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (последовательность в OEIS ).

Простые числа Ньюмена — Шэнкса — Уильямса

Простым числом Ньюмена — Шэнкса — Уильямса (NSW) называется простое число , которое можно записать в виде:

Несколько первых NSW-простых: 7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679 (последовательность в OEIS ).

Простые числа Прота

Простые числа вида , причём нечётно и (последовательность в OEIS ).

Простые числа Софи Жермен

Простые числа такие, что также простые.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (последовательность в OEIS ).

Простые числа Ферма

Это простые числа вида .

Известные простые числа Ферма: 3, 5, 17, 257, 65537 (последовательность в OEIS ).

Простые числа Фибоначчи

Простые числа в последовательности Фибоначчи F 0 = 0, F 1 = 1, F n = F n −1 + F n −2 .

2 , 3 , 5 , 13 , 89 , 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (последовательность в OEIS )

Простые числа Чена

Такие простые числа , что либо простое, либо полупростое :

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (последовательность в OEIS ).

Простые числа Пелля

В теории чисел числами Пелля называется бесконечная последовательность целых чисел, являющихся знаменателями подходящих дробей для квадратного корня из 2. Эта последовательность приближений начинается с 1/1, 3/2, 7/5, 17/12, и 41/29, так что последовательность чисел Пелля начинается с 1, 2, 5, 12 и 29. Несколько первых простых чисел Пелля: 2, 5, 29, 5741, … (последовательность в OEIS ).

Простые числа в форме

2 , 17 , 257 , 1297, 65537 , 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (последовательность в OEIS ).

Сбалансированные простые числа

Простые числа, которые являются средним арифметическим предыдущего простого числа и следующего простого числа:

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (последовательность в OEIS ).

Уникальные простые числа

Простые числа , длина периодической дроби которых от уникальна (ни одно другое простое число не даёт такое же):

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (последовательность в OEIS ).

Факториальные простые

Это простые числа вида для некоторого :

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (последовательность в OEIS ).

Праймориальные простые числа

Простые числа вида p# ± 1 :

p n # − 1 является простым для n = 2, 3, 5, 6, 13, 24, … последовательность A057704 в OEIS
p n # + 1 является простым для n = 1, 2, 3, 4, 5, 11, … последовательность A014545 в OEIS

Центрированные квадратные простые числа

Числа вида :

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (последовательность в OEIS ).

Центрированные треугольные простые числа

Числа вида :

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (последовательность в OEIS ).

Центрированные десятиугольные простые числа

Простые числа, которые можно представить в виде :

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (последовательность в OEIS ).

Примечания

  1. от 6 февраля 2015 на Wayback Machine , The Largest Known Primes — primes.utm.edu
  2. . Дата обращения: 20 декабря 2012. 7 апреля 2018 года.
  3. Lal, M. (англ.) // (англ.) : journal. — American Mathematical Society , 1967. — Vol. 21 . — P. 245—247 . — ISSN . — doi : . 13 января 2015 года.
  4. Bohman, J. New primes of the form n 4 + 1 (англ.) // (англ.) : journal. — Springer, 1973. — Vol. 13 , no. 3 . — P. 370—372 . — ISSN . — doi : .

Литература

  • Генри С. Уоррен, мл. Глава 16. Формулы для простых чисел // Алгоритмические трюки для программистов = Hacker’s Delight. — М. : , 2007. — 288 с. — ISBN 0-201-91465-4 .

Ссылки

Источник —

Same as Список простых чисел