Interested Article - Число Пелля

Число Пелля целое число , входящее в качестве знаменателя в бесконечную последовательность подходящих дробей для квадратного корня из 2 . Эта последовательность приближений начинается следующим образом: , то есть первые числа Пелля — 1, 2, 5, 12 и 29. Числители той же последовательности приближений являются половинами сопутствующих чисел Пелля или числами Пелля — Люка — бесконечной последовательностью, начинающейся с 2, 6, 14, 34 и 82.

Обе последовательности, числа Пелля и сопутствующие числа Пелля, могут быть вычислены с помощью рекуррентного соотношения , похожего на формулы для чисел Фибоначчи , и обе последовательности чисел растут экспоненциально , пропорционально степени серебряного сечения .

Кроме использования в цепной дроби приближений к квадратному корню из двух, числа Пелля могут быть использованы для поиска квадратных треугольных чисел и для решения некоторых комбинаторных задач перечисления .

Последовательность чисел Пелля известна с древних времен. Как и уравнение Пелля , числа Пелля ошибочно приписаны Леонардом Эйлером Джону Пеллю . Числа Пелля — Люка названы в честь Эдуарда Люка , который изучал эти последовательности. И числа Пелля, и сопутствующие числа Пелля, являются частными случаями последовательностей Люка .

Числа Пелля

Числа Пелля задаются линейным рекуррентным соотношением :

и являются частным случаем последовательности Люка .

Первые несколько чисел Пелля

0, 1 , 2 , 5 , 12 , 29 , 70 , 169 , 408, 985, 2378, … (последовательность в OEIS ).

Числа Пелля можно выразить формулой

Для больши́х значений n член доминирует в этом выражении, так что числа Пелля примерно пропорциональны степеням серебряного сечения , аналогично тому, как числа Фибоначчи примерно пропорциональны степеням золотого сечения .

Возможно и третье определение — в виде матричной формулы

Многие тождества могут быть доказаны из этих определений, например тождество, аналогичное тождеству Кассини для чисел Фибоначчи,

как немедленное следствие матричной формулы (подставляя определители матриц слева и справа) .

Приближение к квадратному корню из двух

Рациональное приближение к правильным восьмиугольникам , с координатами из чисел Пелля

Числа Пелля возникли исторически из рациональных приближений к квадратному корню из 2 . Если два больших целых x и y дают решение уравнения Пелля

то их отношение дает близкое приближение к . Последовательность приближений этого вида

где знаменатель каждой дроби — число Пелля, а числитель равен сумме числа Пелля и его предшественника в последовательности. Таким образом, приближения имеют вид .

Приближение

этого типа было известно математикам Индии в третьем—четвертом столетии до нашей эры . Греческие математики пятого столетия до нашей эры также знали об этом приближении . Платон ( Plato ) ссылается на числители как рациональные диаметры . Во втором столетии нашей эры Теон Смирнский использовал термины сторона и диаметр для описания знаменателя и числителя этой последовательности .

Эти приближения могут быть получены из цепной дроби :

Конечная часть цепной дроби дает аппроксимацию в виде чисел Пелля. Например,

Как писал Кнут (1994), факт аппроксимации числами Пелля позволяет использовать их для рационального приближения к правильному восьмиугольнику с координатами вершин и . Все вершины этого восьмиугольника одинаково удалены от центра и формируют почти одинаковые углы. Также точки , и формируют восьмиугольник, у которого вершины почти одинаково удалены от центра и формируют одинаковые углы.

Простые и квадраты

Простым числом Пелля называется число Пелля, являющееся также простым . Несколько первых простых чисел Пелля

2, 5, 29, 5741, … (последовательность в OEIS )

Как и в случае с числами Фибоначчи, число Пелля может быть простым только если n само просто.

Имеется всего три числа Пелля, являющимися квадратами, кубами и другими более высокими степенями, — это 0, 1 и 169 = 13 2 .

Несмотря на то, что имеется столь мало квадратов и других степеней среди чисел Пелля, они имеют близкую связь с квадратными треугольными числами . Эти числа возникают из следующего тождества:

Левая часть этого тождества даёт квадратное число , в то время как правая часть даёт треугольное число , так что в результате получим квадратное треугольное число.

Сантана (Santana) и Диац-Барреро (Diaz-Barrero) (2006) доказали другое тождество, связывающее числа Пелля с квадратами, показав, что сумма чисел Пелля до всегда квадрат:

Например, сумма чисел Пелля до , , является квадратом числа .

Числа , образующие квадратные корни таких сумм,

1, 7, 41, 239, 1393, 8119, 47 321, … (последовательность в OEIS ),

известны как простые числа Ньюмена — Шэнкса — Уильямса .

Пифагоровы тройки

Прямоугольные треугольники с почти равными катетами и целочисленными координатами, порождённые числами Пелля.

Если прямоугольный треугольник имеет стороны a , b , c (по теореме Пифагора a 2 + b 2 = c 2 ), то ( a , b , c ) известны как пифагоровы тройки . Мартин (Martin) (1875) пишет, что числа Пелля могут быть использованы для формирования пифагоровых троек, в которых a и b отличаются на единицу, что соответствует почти равнобедренному прямоугольному треугольнику. Каждая такая тройка имеет вид

Последовательность пифагоровых троек, полученного таким способом

(4,3,5), (20,21,29), (120,119,169), (696,697,985), ….

Числа Пелля — Люка

Сопутствующие числа Пелля или числа Пелля — Люка определяются линейным рекуррентным соотношением :

То есть, первые два числа в последовательности равны 2, а все остальные формируются как сумма удвоенного предыдущего числа Пелля — Люка и предшествующего ему, или, что эквивалентно, сложением следующего числа Пелля и предыдущего числа. Так, сопровождающим для 82 является число 29, и 82 = 2 · 34 + 14 = 70 + 12.

Сопутствующие числа Пелля образуют последовательность:

2 , 2 , 6 , 14 , 34 , 82 , , , … (последовательность в OEIS )

Сопутствующие числа Пелля можно выразить формулой:

Все эти числа чётны, каждое из них является удвоенным числителем в приближении рациональными числами к .

Вычисления и связи

Следующая таблица даёт несколько первых степеней серебряного сечения и связанного с ним .

0
1
2
3
4
5
6
7
8
9
10
11
12

Коэффициенты представляют собой половины сопутствующих чисел Пелля и числа Пелля , являющиеся неотрицательными решениями уравнения .

Квадратное треугольное число — это число , которое является как -м треугольным числом так и -м квадратным. Почти равнобедеренные пифагоровы тройки являются целыми решениями , где .

Следующая таблица показывает разложение нечетных на две почти одинаковые половинки, дающее квадратное треугольное число когда n четно и почти равнобедренную пифагорову тройку, когда n нечетно.

t t+1 s a b c
0 1 0 0 0 0
1 1 1 0 1 1
2 3 2 1 2 1
3 7 5 3 4 5
4 17 12 8 9 6
5 41 29 20 21 29
6 99 70 49 50 35
7 239 169 119 120 169
8 577 408 288 289 204
9 1393 985 696 697 985
10 3363 2378 1681 1682 1189
11 8119 5741 4059 4060 5741
12 19601 13860 9800 9801 6930

Определения

Половины сопутствующих чисел Пелля и числа Пелля могут быть получены несколькими эквивалентными путями:

Возведение в степень :

Откуда следует:

и

Парные рекуррентные отношения :

или, в матричном виде :

Таким образом

Приближения

Разность и равна , что быстро стремится к нулю. Таким образом очень близко к .

Из этого наблюдения следует, что отношение целых быстро приближается к в то время как и быстро приближается к .

H 2 − 2 P 2 = ±1

Поскольку является иррациональным, мы не можем получить , то есть . Лучшее, что мы можем получить, это либо либо .

Неотрицательными решениями являются пары с четным n , и решениями являются пары с n нечетным.

Чтобы понять это, заметим

так что, начиная с знак чередуется ( ). Заметим теперь, что каждое положительное решение можно получить из решения с меньшим индексом благодаря равенству .

Квадратные треугольные числа

Требуемое равенство эквивалентно , что превращается в при подстановке и . Отсюда n -м решением будет и

Заметим, что и взаимно просты, так что возможно только тогда, когда они являются соседними целыми, одно — квадрат и другое — удвоенный квадрат . Поскольку мы знаем все решения уравнения, мы получаем

и

t t+1 s a b c
0 1 0
1 1 1 1 2 1 1 0 1
2 3 2 8 9 6 3 4 5
3 7 5 49 50 35 21 20 29
4 17 12 288 289 204 119 120 169
5 41 29 1681 1682 1189 697 696 985
6 99 70 9800 9801 6930 4059 4060 5741

Триплеты Пифагора

Равенство верно только при , что превращается в при подстановке . Тогда n -м решением является и

Таблица выше показывает, что с точностью до порядка и равны и , в то время как

Примечания

  1. Например, Селлерс ( Sellers ) в 2002 году показал, что количество совершенных паросочетаний в декартовом произведении путей и графа K 4 - e может быть вычислено как произведение числа Пелля на соответствующие число Фибоначчи
  2. О матричной формуле и её следствиях смотрите Эрколано (Ercolano) (1979), Килик (Kilic) и Таски (Tasci) (2005). Другие тождества для чисел Пелля приведены Хорадамом (Horadam) (1971) и Бикнеллем (Bicknell) (1975).
  3. Это записано в . Смотрите, например, Дутка (Dutka) (1986), который цитировал Тибаута (Thibaut) (1875)
  4. Смотри Кнорра (Knorr) (1976) со ссылкой на пятое столетие, что соответствует утверждению Прокла , что числа были открыты пифагорейцами . Для более полного исследования о более поздних знаниях греков об этих числах смотри Томпсона (Thompson) (1929), Ведова (Vedova) (1951), Риденхоура (Ridenhour) (1986), Кнорра (Knorr) (1998), и Филепа (Filep) (1999).
  5. Например, в Государстве Платона имеется ссылка на «рациональный диаметр пяти», под которым Платон подразумевал 7, числитель приближения 7/5.
  6. . Дата обращения: 28 января 2013.
  7. Pethő (1992); Cohn (1996). Хотя числа Фибоначчи определяются рекуррентными формулами, очень похожими на формулы для чисел Пелля, Кон (Cohn) пишет, что аналогичные результаты для чисел Фибоначчи куда сложнее доказать (однако, они доказаны в 2006 году Бугеадом [Bugeaud]).
  8. Sesskin (1962).

Литература

  • Bicknell, Marjorie. // . — 1975. — Т. 13 , вып. 4 . — С. 345—349 .
  • Cohn, J. H. E. Perfect Pell powers // . — 1996. — Т. 38 , вып. 1 . — С. 19—20 . — doi : .
  • Dutka, Jacques. // Archive for History of Exact Sciences . — 1986. — Т. 36 , вып. 1 . — С. 21—39 . — doi : .
  • Ercolano, Joseph. // . — 1979. — Т. 17 , вып. 1 . — С. 71—77 .
  • Filep, László. Pythagorean side and diagonal numbers // . — 1999. — Т. 15 . — С. 1–7 .
  • Horadam, A. F. // . — 1971. — Т. 9 , вып. 3 . — С. 245—252, 263 .
  • Kilic, Emrah; Tasci, Dursun. The linear algebra of the Pell matrix // , Tercera Serie. — 2005. — Т. 11 , вып. 2 . — С. 163—174 .
  • Knorr, Wilbur. Archimedes and the measurement of the circle: A new interpretation // Archive for History of Exact Sciences . — 1976. — Т. 15 , вып. 2 . — С. 115—140 . — doi : .
  • Knorr, Wilbur. // American Mathematical Monthly . — 1998. — Т. 105 , вып. 5 . — С. 421—429 . — doi : .
  • Knuth, Donald E. // . — 1994. — Т. 78 , вып. 483 . — С. 274—297 . — doi : . — arXiv : .
  • . Rational right angled triangles nearly isosceles // The Analyst . — 1875. — Т. 3 , вып. 2 . — С. 47—50 . — doi : . — JSTOR .
  • Pethő, A. Sets, graphs, and numbers (Budapest, 1991). — Colloq. Math. Soc. János Bolyai, 60, North-Holland, 1992. — С. 561—568.
  • Ridenhour, J. R. // Mathematics Magazine . — Т. 59 , вып. 2 . — С. 95—105 . — doi : . — JSTOR .
  • Santana, S. F.; Diaz-Barrero, J. L. Some properties of sums involving Pell numbers // . — 2006. — Т. 18 , вып. 1 . 8 мая 2007 года.
  • Sellers, James A. Domino tilings and products of Fibonacci and Pell numbers // Journal of Integer Sequences . — 2002. — Т. 5 .
  • Sesskin, Sam. // Mathematics Magazine . — 1962. — Т. 35 , вып. 4 . — С. 215—217 . — doi : . — JSTOR .
  • Thibaut, George. On the Súlvasútras // . — 1875. — Т. 44 . — С. 227—275 .
  • Thompson, D'Arcy Wentworth. // . — 1929. — Т. 38 , вып. 149 . — С. 43—55 . — JSTOR .
  • Vedova, G. C. // American Mathematical Monthly . — 1951. — Т. 58 , вып. 10 . — С. 675—683 . — doi : . — JSTOR .

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Число Пелля