Interested Article - Гравитационное поле

Гравитацио́нное по́ле , или по́ле тяготе́ния , — фундаментальное физическое поле , через которое осуществляется гравитационное взаимодействие между всеми материальными телами . Создаётся телами, обладающими массой . Количественно характеризуется зависящими от координат напряжённостью (размерность Н /кг, она же м/c 2 ) или потенциалом ( Дж /кг, то есть м 2 /c 2 ).

Гравитационное поле в классической физике

Закон всемирного тяготения Ньютона

Закон тяготения Ньютона

В рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона , согласно которому сила гравитационного притяжения между двумя материальными точками с массами и пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:

Здесь гравитационная постоянная , приблизительно равная м³/(кг с²), — расстояние между точками.

Решение задачи динамики в общем случае, когда тяготеющие массы нельзя считать материальными точками , подразделяется на два этапа: вначале рассчитывается гравитационное поле, создаваемое этими массами, а затем определяется его действие на массивные тела в изучаемой системе.

Расчёт гравитационного потенциала

Гравитационное поле является потенциальным . Его потенциал удовлетворяет уравнению Пуассона:

,

где оператор Лапласа . Решение данного уравнения имеет вид:

.

Здесь — радиус-вектор точки, в которой определяется потенциал, — радиус-вектор элемента объёма c плотностью вещества , а интегрирование охватывает все такие элементы. На бесконечности .

В частном случае поля, создаваемого расположенной в начале координат точечной массой , потенциал равен

.

Этим же выражением описывается потенциал тела со сферически-симметрично распределённой массой , за его пределами.

В общем случае тела произвольной формы на больших расстояниях от него неплохое приближение для потенциала даёт формула :

где за начало координат принят центр масс тела, главные моменты инерции тела, момент инерции относительно оси . Эта формула несколько упрощается для астрономических объектов, представляющих собой сплюснутые сфероиды вращения с концентрически однородным распределением масс. У таких тел и где — угол между и плоскостью главных осей и . В итоге

Движение в гравитационном поле

Если потенциал поля определён, то сила притяжения, действующая в гравитационном поле на материальную точку с массой , находится по формуле:

.

В частном случае поля точечной массы , расположенной в начале координат ( ), действующая сила составит

.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Если исследуемое тело нельзя рассматривать как материальную точку, то его движение в гравитационном поле включает также вращение вокруг оси, проходящей через центр масс :

Здесь: угловой момент относительно центра масс, — равнодействующая моментов действующих сил относительно центра масс. Более общий случай, когда масса исследуемого тела сравнима с массой источника поля, известен как задача двух тел , и её формулировка сводится к системе двух независимых движений. Исследование движения более чем двух тел (« задача трёх тел ») разрешимо только в нескольких специальных случаях.

Недостатки ньютоновской модели тяготения

Практика показала, что классический закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Однако ньютоновская теория содержала ряд серьёзных недостатков. Главный из них — необъяснимое дальнодействие : сила притяжения передавалась неизвестно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная , как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс : потенциал поля всюду обращается в бесконечность. В конце XIX века обнаружилась ещё одна проблема: заметное расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона оказалась приближением более общей теории, применимым при выполнении двух условий:

  1. Гравитационный потенциал в исследуемой системе не слишком велик (много меньше ). В Солнечной системе это условие для большинства движений небесных тел можно считать выполненным — даже на поверхности Солнца отношение составляет всего . Заметным релятивистским эффектом является только указанное выше смещение перигелия .
  2. Скорости движения в этой системе незначительны по сравнению со скоростью света .

Гравитационное поле в общей теории относительности

В общей теории относительности (ОТО) гравитационное поле является не отдельным физическим понятием, а свойством пространства-времени, появляющимся в присутствии материи. Этим свойством является неевклидовость метрики (геометрии) пространства-времени, и материальным носителем тяготения является пространство-время . Тот факт, что гравитацию можно рассматривать как проявление свойств геометрии четырёхмерного неевклидова пространства, без привлечения дополнительных понятий, есть следствие того, что все тела в поле тяготения получают одинаковое ускорение (« принцип эквивалентности » Эйнштейна). Пространство-время при таком подходе приобретает физические атрибуты, которые влияют на физические объекты и сами зависят от них.

Пространство-время ОТО представляет собой псевдориманово многообразие с переменной метрикой. Причиной искривления пространства-времени является присутствие материи, и чем больше её энергия, тем искривление сильнее. В ОТО символы Кристоффеля играют роль гравитационного силового поля, а метрический тензор играет роль гравитационного потенциала. Для определения метрики пространства-времени при известном распределении материи надо решить уравнения Эйнштейна . Ньютоновская же теория тяготения представляет собой приближение ОТО, которое получается, если учитывать только «искривление времени», то есть изменение временно́й компоненты метрики, (пространство в этом приближении евклидово). Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью , и дальнодействие в ОТО отсутствует.

Другие существенные отличия гравитационного поля ОТО от ньютоновского: возможность нетривиальной топологии пространства, особых точек , гравитационные волны .

См. также

Примечания

  1. Советский энциклопедический словарь. — 2-е изд. — М. : Советская энциклопедия, 1982. — С. 332.
  2. , с. 574..
  3. , с. 575..
  4. Гинзбург В. Л. Гелиоцентрическая система и общая теория относительности (от Коперника до Эйнштейна) // Эйнштейновский сборник. — М. : Наука, 1973. — С. 63. .
  5. Ландау Л. Д. , Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М. : Наука , 1988. — 512 с. — (« Теоретическая физика », том II). — ISBN 5-02-014420-7 . , § «Закон Ньютона».

Литература

  • Дубошин Г. Н. . Небесная механика. Основные задачи и методы. — М. : Наука , 1968. — 800 с.
  • Иваненко Д. Д. , Сарданашвили Г. А. . Гравитация. — 3-е изд. — М. : УРСС, 2008. — 200 с.
  • Мензел Д. (ред.). Основные формулы физики. Глава 29. Небесная механика. — М. : Изд. иностранной литературы, 1957. — 658 с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М. : Мир, 1977.

Ссылки

  • Тюлина И. А. Об основах ньютоновой механики (к трёхсотлетию «Начал» Ньютона) // История и методология естественных наук. — М. : МГУ, 1989. — Вып. 36 . — С. 184—196. .
Источник —

Same as Гравитационное поле