Interested Article - Непрерывная функция

Непрерывная функция функция , которая меняется без мгновенных «скачков» (называемых разрывами ), то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.

Непрерывная функция, вообще говоря, синоним понятия непрерывное отображение , тем не менее чаще всего этот термин используется в более узком смысле — для отображений между числовыми пространствами, например, на вещественной прямой . Эта статья посвящена именно непрерывным функциям, определённым на подмножестве вещественных чисел и принимающим вещественные значения. Вариацию этого понятия для функций комплексной переменной см. в статье Комплексный анализ .

Определение

Пусть и . Существует несколько эквивалентных определений непрерывности функции в точке .

  • Определение через предел : функция непрерывна в точке , предельной для множества , если имеет предел в точке , и этот предел совпадает со значением функции :
  • Определение, использующее ε-δ-формализм : функция непрерывна в точке , если для любого существует такое, что для любого ,
Комментарий: По сравнению с определением предела функции по Коши в определении непрерывности нет требования, обязывающего все значения аргумента удовлетворять условию , то есть быть отличными от а.
  • Определение, использующее o-символику : функция непрерывна в точке , если
    , при .
  • Определение через колебания : функция непрерывна в точке, если её колебание в данной точке равно нулю.

Функция непрерывна на множестве , если она непрерывна в каждой точке данного множества.

В этом случае говорят, что функция класса и пишут: или, подробнее, .

Точки разрыва

Если условие, входящее в определение непрерывности функции, в некоторой точке нарушается, то говорят, что рассматриваемая функция терпит в данной точке разрыв . Другими словами, если — значение функции в точке , то предел такой функции (если он существует) не совпадает с . На языке окрестностей условие разрывности функции в точке получается отрицанием условия непрерывности рассматриваемой функции в данной точке, а именно: существует такая окрестность точки области значений функции , что как бы мы близко не подходили к точке области определения функции , всегда найдутся такие точки, чьи образы будут за пределами окрестности точки .

Классификация точек разрыва в ℝ¹

Классификация разрывов функций зависит от того, как устроены множества X и Y . Здесь приведена классификация для простейшего случая — . Таким же образом классифицируют и особые точки (точки, где функция не определена). Стоит заметить, что классификация в различается от автора к автору.

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

  • если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . К точкам разрыва первого рода относят устранимые разрывы и скачки .
  • если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода . К точкам разрыва второго рода относят полюса и точки существенного разрыва .

Устранимая точка разрыва

Если предел функции существует и конечен , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка называется точкой устранимого разрыва функции (при отсутствии устранимая особая точка ).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точка разрыва «скачок»

Разрыв «скачок» (особая точка «скачок») возникает, если

, и пределы конечны.

Точка разрыва «полюс»

Разрыв «полюс» (особая точка «полюс») возникает, если один из односторонних пределов бесконечен.

или . [ источник не указан 2993 дня ]

Точка существенного разрыва

В точке существенного разрыва (существенной особой точке) хотя бы один из односторонних пределов вообще отсутствует.

Классификация изолированных особых точек в ℝ n , n>1

Для функций и нет нужды работать с точками разрыва, зато часто приходится работать с особыми точками (точками, где функция не определена). Классификация изолированных особых точек (то есть таких, где в какой-то окрестности нет других особых точек) сходная.

Понятие «скачок» отсутствует. То, что в считается скачком, в пространствах бóльших размерностей — существенная особая точка.

Свойства

Локальные

  • Функция, непрерывная в точке , является ограниченной в некоторой окрестности этой точки.
  • Если функция непрерывна в точке и (или ), то (или ) для всех , достаточно близких к .
  • Если функции и непрерывны в точке , то функции и тоже непрерывны в точке .
  • Если функции и непрерывны в точке и при этом , то функция тоже непрерывна в точке .
  • Если функция непрерывна в точке и функция непрерывна в точке , то их композиция непрерывна в точке .

Глобальные

  • Теорема о равномерной непрерывности : функция, непрерывная на отрезке (или любом другом компактном множестве ), равномерно непрерывна на нём.
  • Теорема Вейерштрасса о функции на компакте : функция, непрерывная на отрезке (или любом другом компактном множестве ), ограничена и достигает на нём свои максимальное и минимальное значения.
  • Областью значений функции , непрерывной на отрезке , является отрезок где минимум и максимум берутся по отрезку .
  • Если функция непрерывна на отрезке и то существует точка в которой .
  • Теорема о промежуточном значении : если функция непрерывна на отрезке и число удовлетворяет неравенству или неравенству то существует точка в которой .
  • Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна .
  • Монотонная функция на отрезке непрерывна в том и только в том случае, когда область её значений является отрезком с концами и .
  • Если функции и непрерывны на отрезке , причем и то существует точка в которой Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку .
  • График непрерывной на отрезке функции является кривой .

Примеры

Элементарные функции

Произвольные многочлены , рациональные функции , показательные функции , логарифмы , тригонометрические функции (прямые и обратные) непрерывны везде в своей области определения.

Функция с устранимым разрывом

Функция задаваемая формулой

непрерывна в любой точке Точка является точкой устранимого разрыва, ибо предел функции

Функция знака

Функция

называется функцией знака .

Эта функция непрерывна в каждой точке .

Точка является точкой разрыва первого рода , причём

,

в то время как в самой точке функция обращается в нуль.

Функция Хевисайда

Функция Хевисайда , определяемая как

является всюду непрерывной, кроме точки , где функция терпит разрыв первого рода. Тем не менее, в точке существует правосторонний предел, который совпадает со значением функции в данной точке. Таким образом, данная функция является примером непрерывной справа функции на всей области определения .

Аналогично, ступенчатая функция, определяемая как

является примером непрерывной слева функции на всей области определения .

Функция Дирихле

Функция

называется функцией Дирихле . По сути, функция Дирихле — это характеристическая функция множества рациональных чисел . Эта функция разрывна в каждой точке , поскольку в сколь угодно малой окрестности любой точки имеются как рациональные, так и иррациональные числа.

Функция Римана

Функция

называется функцией Римана или «функцией Тома».

Эта функция непрерывна на множестве иррациональных чисел ( ), поскольку предел функции в каждой иррациональной точке равен нулю (если последовательность , то с необходимостью ). Во всех же рациональных точках она разрывна.

Вариации и обобщения

Равномерная непрерывность

Функция называется равномерно непрерывной на , если для любого существует такое, что для любых двух точек и таких, что , выполняется .

Каждая равномерно непрерывная на множестве функция, очевидно, является также и непрерывной на нём. Обратное, вообще говоря, неверно. Однако, если область определения — компакт, то непрерывная функция оказывается также и равномерно непрерывной на данном отрезке.

Полунепрерывность

Существует два симметричных друг другу свойства — полунепрерывность снизу и полунепрерывность сверху :

  • функция называется полунепрерывной снизу в точке , если для любого существует такая окрестность , что для всякого ;
  • функция называется полунепрерывной сверху в точке , если для любого существует такая окрестность , что для всякого .

Между непрерывностью и полунепрерывностью имеется следующая связь:

  • если взять функцию , непрерывную в точке , и уменьшить значение (на конечную величину), то мы получим функцию, полунепрерывную снизу в точке ;
  • если взять функцию , непрерывную в точке , и увеличить значение (на конечную величину), то мы получим функцию, полунепрерывную сверху в точке .

В соответствии с этим можно допустить для полунепрерывных функций бесконечные значения:

  • если , то будем считать такую функцию полунепрерывной снизу в точке ;
  • если , то будем считать такую функцию полунепрерывной сверху в точке .

Односторонняя непрерывность

Функция называется непрерывной слева (справа) в точке её области определения, если для одностороннего предела выполняется равенство:

Непрерывность почти всюду

На вещественной прямой обычно рассматривается простая линейная мера Лебега . Если функция такова, что она непрерывна всюду на , кроме, быть может, множества меры нуль, то такая функция называется непрерывной почти всюду .

В том случае, когда множество точек разрыва функции не более чем счётно, мы получаем класс интегрируемых по Риману функций (см. критерий интегрируемости функции по Риману).

Примечания

Литература

  • Зорич В. А. Математический анализ, часть I. — М. : Физматлит, 1984. — 544 с.
Источник —

Same as Непрерывная функция