Interested Article - Вектор-функция

Вектор-функция функция , значениями которой являются векторы в векторном пространстве двух, трёх или более измерений. Аргументами функции могут быть:

  • одна скалярная переменная — тогда значения вектор-функции определяют в некоторую кривую ;
  • m скалярных переменных — тогда значения вектор-функции образуют в , вообще говоря, m -мерную поверхность;
  • векторная переменная — в этом случае вектор-функцию обычно рассматривают как векторное поле на .

Вектор-функция одной скалярной переменной

Для наглядности далее ограничимся случаем трёхмерного пространства, хотя распространение на общий случай не составляет труда. Вектор-функция одной скалярной переменной отображает некоторый интервал вещественных чисел в множество пространственных векторов (интервал может также быть бесконечным).

Выбрав координатные орты , мы можем разложить вектор-функцию на три координатные функции x ( t ), y ( t ), z ( t ):

Рассматриваемые как радиус-векторы , значения вектор-функции образуют в пространстве некоторую кривую, для которой t является параметром.

Говорят, что вектор-функция имеет предел в точке , если (здесь и далее обозначают модуль вектора ). Предел вектор-функции имеет обычные свойства:

  • Предел суммы вектор-функций равен сумме пределов слагаемых (в предположении, что они существуют).
  • Предел скалярного произведения вектор-функций равен скалярному произведению пределов сомножителей.
  • Предел векторного произведения вектор-функций равен векторному произведению пределов сомножителей.

Непрерывность вектор-функции определяется традиционно.

Производная вектор-функции по параметру

Определим производную вектор-функции по параметру:

.

Если производная в точке существует, вектор-функция называется дифференцируемой в этой точке. Координатными функциями для производной будут .

Свойства производной вектор-функции (всюду предполагается, что производные существуют):

  • — производная суммы есть сумма производных
  • — здесь f(t) — дифференцируемая скалярная функция.
  • — дифференцирование скалярного произведения .
  • — дифференцирование векторного произведения .
  • — дифференцирование смешанного произведения .

О применении вектор-функций одной скалярной переменной в геометрии см.: дифференциальная геометрия кривых .

Вектор-функция нескольких скалярных переменных

Для наглядности ограничимся случаем двух переменных в трёхмерном пространстве. Значения вектор-функции (их годограф ) образуют, вообще говоря, двумерную поверхность, на которой аргументы u, v можно рассматривать как внутренние координаты точек поверхности.

В координатах уравнение имеет вид:

Аналогично случаю одной переменной, мы можем определить производные вектор-функции, которых теперь будет две: . Участок поверхности будет невырожденным (то есть в нашем случае — двумерным), если на нём не обращается тождественно в ноль.

Координатная сетка на сфере

Кривые на этой поверхности удобно задавать в виде:

,

где t — параметр кривой. Зависимости предполагаются дифференцируемыми, причём в рассматриваемой области их производные не должны одновременно обращаться в нуль. Особую роль играют координатные линии , образующие сетку координат на поверхности:

— первая координатная линия.
— вторая координатная линия.

Если на поверхности нет особых точек ( нигде не обращается в ноль), то через каждую точку поверхности проходят точно две координатные линии.

Подробнее о геометрических приложениях вектор-функций нескольких скалярных переменных см.: Теория поверхностей .

Литература

  • Борисенко А. И., Тарапов И. Е. Векторный анализ и начала тензорного исчисления. 3-е изд. М.: Высшая школа, 1966.
  • Краснов М. Л., Кисилев А.И., Макаренко Г.И. Векторный анализ. Наука, 1978, 160 с. (2-е изд. УРСС, 2002)
  • Кочин Н. Е. от 14 ноября 2007 на Wayback Machine 9-е изд. М.: Наука, 1965.
Источник —

Same as Вектор-функция