Interested Article - Окрестность

На плоскости подмножество является окрестностью точки , если вокруг точки можно нарисовать небольшой диск, который будет целиком содержаться в .
Прямоугольник не может являться окрестностью своих вершин.

Окре́стность точки — множество, содержащее данную точку и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.

Определения

Математический анализ

Пусть произвольное фиксированное число.

Окрестностью точки на числовой прямой (иногда говорят -окрестностью) называется множество точек, удаленных от менее чем на , то есть .

В многомерном случае функцию окрестности выполняет открытый -шар с центром в точке .

В банаховом пространстве окрестностью с центром в точке называют множество .

В метрическом пространстве окрестностью с центром в точке называют множество .

Общая топология

Пусть задано топологическое пространство , где — произвольное множество , а — определённая на топология .

  • Множество называется окрестностью точки , если существует открытое множество такое, что .
  • Аналогично окрестностью множества называется такое множество , что существует открытое множество , для которого выполнено .

Замечания

  • Приведённые выше определения не требуют, чтобы окрестность была открытым множеством, но лишь чтобы она содержала открытое множество . Некоторые авторы настаивают на том, что любая окрестность открыта. Тогда окрестностью множества называется любое содержащее его открытое множество. Это не принципиальное для развития дальнейшей топологической теории различие. Однако в каждом случае важно фиксировать терминологию.
  • Окрестностью множества точек называется такое множество , что есть окрестность любой точки .

Пример

Пусть дана вещественная прямая со стандартной топологией . Тогда является открытой окрестностью, а — замкнутой окрестностью точки .

Вариации и обобщения

Проколотая окрестность

Проколотой окрестностью точки называется окрестность точки, из которой исключена эта точка.

Строго говоря, проколотая окрестность не является окрестностью точки, так как согласно определению окрестности окрестность должна включать и саму точку.

Формальное определение: Множество называется проколотой окрестностью (вы́колотой окрестностью) точки , если

где — окрестность .

См. также

Примечания

  1. , с. 13.

Литература

  • Математическая Энциклопедия. — М. : Советская Энциклопедия , 1984 . — Т. 4.
  • У.Рудин. Функциональный анализ. — М. : Мир , 1975 .
Источник —

Same as Окрестность