Измеримое пространство
— это пара
, где
— множество, а
— некоторая
-алгебра
его подмножеств.
Основные сведения
Под
измеримым топологическим
пространством
понимается измеримое пространство
, в котором выбрана
— алгебра
, порождённая некоторой базой множеств
топологического пространства
X. Минимальная
— алгебра, содержащая все открытые множества, называется
борелевской
— алгеброй
пространства X; при этом множества
называются
борелевскими
.
Измеримое пространство
называется
сепарабельным
, если существует некоторая счётная система множеств
, отделяющая точки пространства
и порождающая соответствующую
— алгебру
. Говорят, что система множеств
, отделяет точки пространства
, если для любых
найдутся непересекающиеся множества
такие, что
.
Произведением измеримых пространств
и
называется измеримое пространство
,
, в котором
— алгебра
, порождена
произведением
— алгебр
и
, то есть
порождается полукольцом
всевозможных прямоугольных множеств вида
, где
,
.
Пусть
— некоторое измеримое пространство, а
—
конечное множество
индексов
. Измеримое пространство
, где
является
- кратным произведением пространства само на себя, а
— алгебра
есть
- кратное произведение соответствующих
— алгебр
, называется
измеримым координатным пространством
. Точки
этого пространства
задаются координатами
. Если
произвольное множество, то координатное пространство
определяется как совокупность всех функций
на множестве
со значениями в пространстве
(отдельные значения
можно интерпретировать как координаты точки
, принадлежащей пространству
).
Пусть
— произвольные точки множества
, где
- конечное число, и
— произвольные подмножества пространства
. Множество вида
-
-
,
принадлежащие пространству
, называется
цилиндрическим множеством
в
. Другими словами, цилиндрическое множество состоит из тех и только тех точек
, координаты которых
входит в соответствующие множества
. Система всех цилиндрических множеств, для которых
входят в
— алгебру
пространства
, представляют собой
полукольцо
.
Измеримым координатным пространством
называется пространство
с
— алгеброй
, порождённой полукольцом
.
Пусть
,
—
— алгебра, порождённая полукольцом
всевозможных цилиндрических множеств с произвольными индексами
. Если точка
пространства
входит во множество
из
и другая точка
такова, что соответствующие координаты этих точек совпадают:
при всех
, то
также входит в
. Всякое множество A из
— алгебры
принадлежит одновременно некоторой
— алгебры
, где
- некоторое
счётное множество
(зависящее, вообще говоря, от рассматриваемого множества S).
Пусть
— функция на измеримом пространстве
со значениями в произвольном пространстве
. Совокупность
всех множеств
таких, что прообразы
входят в
-алгебру
пространства
является
-алгеброй.
Пусть
произвольное пространство и
— функция на
со значениями в измеримом пространстве
. Совокупность
всех множеств
являющихся прообразами
из
— алгебры
:
является
-алгеброй.
Пусть
,
— измеримые пространства. Функция
называется
(
) измеримой
, если для
прообраз
входит в
-алгебру
. Если
некоторая система множеств, порождающая
-алгебру
, то функция
является измеримой тогда, и только тогда, когда для любого
прообраз
входит в
.
Примечание
-
↑
Прохоров Ю. В.
, Розанов Ю. А. Теория вероятностей (Основные понятия. Предельные теоремы. Случайные процессы) — М.: Главная редакция физико-математической литературы изд-ва «Наука», 1973. — 496 стр.