Interested Article - Поток Риччи

Поток Риччи — система дифференциальных уравнений в частных производных , описывающая деформацию римановой метрики на многообразии .

Эта система является нелинейным аналогом уравнения теплопроводности .

Назван по аналогии с кривизной Риччи , в честь итальянского математика Риччи-Курбастро .

Уравнение

Уравнение потока Риччи имеет вид:

где обозначает однопараметрическое семейство римановых метрик на полном многообразии (зависящая от вещественного параметра ), и — её тензор Риччи .

Свойства

  • Формально говоря, система уравнений , задаваемая потоком Риччи, не является параболическим уравнением . Тем не менее, существует параболическая система уравнений , предложенная Детурком , такая, что если риманова метрика на компактном многообразии и , — решения систем и , то изометрично для всех .
    • Эта конструкция существенно упростила доказательство существования решения, она называется «трюком Детурка».
  • Аналогично уравнению теплопроводности (и прочим параболическим уравнениям ), задав произвольные начальные условия при , можно получить решения лишь в одну сторону по , а именно .
  • В отличие от решений уравнения теплопроводности, поток Риччи, как правило, не продолжается неограниченно при . Решение продолжается на максимальный интервал . В случае если конечно, при приближении к кривизна многообразия идёт к бесконечности, и в решении формируется сингулярность . Именно на исследовании сингулярностей, в которые упираются потоки Риччи, и было основано доказательство гипотезы Тёрстона.
  • Псевдолокальность — если некоторая окрестность точки в начальный момент выглядит почти как кусок евклидова пространства, то это свойство сохранится определённое время в потоке Риччи у меньшей окрестности.

Изменение геометрических характеристик

  • Для объёма метрики верно соотношение
  • Для скалярной кривизны метрики верно соотношение
где определяется как для ортонормированного репера в точке.
  • В частности, согласно принципу максимума , поток Риччи сохраняет положительность скалярной кривизны.
  • Более того, нижняя грань скалярной кривизны не убывает.
  • Для каждого -ортонормированного репера в точке существует так называемый сопутствующий -ортонормированный репер . Для тензора кривизны , записанного в этом базисе, верно соотношение
где — определённая билинейная квадратичная форма на пространстве тензоров кривизны и со значениями в них.
  • Билинейная квадратичная форма определяет векторное поле на векторном пространстве тензоров кривизны — каждому тензору кривизны приписывается другой тензор кривизны . Решения ОДУ
играют важную роль в теории потоков Риччи.
  • Выпуклые множества в пространстве тензоров кривизны, инвариантные относительно вращений и такие, что если в приведённом ОДУ , то при , называются инвариантными для потока Риччи. Если кривизна римановой метрики на замкнутом многообразии в каждой точке принадлежит такому , то тоже верно и для метрик, получаемых из неё потоком Риччи. Рассуждения такого сорта называются «принципом максимума» для потока Риччи.
  • К инвариантным множествам относятся

Размерность 3

В случае, когда размерность пространства равна 3, для каждого и можно подобрать репер , в котором диагонализуется в базисе , , , скажем,

Тогда

История

Начало исследованию потока Риччи было положено Гамильтоном в начале 1980-x годов. С помощью потоков Риччи были доказаны несколько гладких теорем о сфере .

Используя потоки Риччи в своих статьях , опубликованных в 2002-2003 годах, Перельману удалось доказать гипотезу Тёрстона , проведя тем самым полную классификацию компактных трёхмерных многообразий , и доказать гипотезу Пуанкаре .

Примечания

  1. См. статьи Григория Перельмана в списке литературы.
  2. от 21 января 2021 на Wayback Machine «This conjecture was formulated by Henri Poincaré [58] in 1904 and has remained open until the recent work of Perelman. … Perelman’s arguments rest on a foundation built by Richard Hamilton with his study of the Ricci flow equation for Riemannian metrics.».

Литература

  • Hamilton, R. S. Three Manifolds with Positive Ricci Curvature // J. Diff. Geom. 17, 255—306, 1982.
  • Hamilton, R. S. Four Manifolds with Positive Curvature Operator // J. Diff. Geom. 24, 153—179, 1986.
  • Perelman, Grisha (November 11, 2002). "The entropy formula for the Ricci flow and its geometric applications". arXiv : . {{ cite arXiv }} : |class= игнорируется ( справка )
  • Perelman, Grisha (March 10, 2003). "Ricci flow with surgery on three-manifolds". arXiv : . {{ cite arXiv }} : |class= игнорируется ( справка )
  • Perelman, Grisha (July 17, 2003). "Finite extinction time for the solutions to the Ricci flow on certain three-manifolds". arXiv : . {{ cite arXiv }} : |class= игнорируется ( справка )
  • Bruce Kleiner, John Lott: (PDF; 1,5 MB), 2008.
  • J. Rubinstein, R. Sinclair: (PDF; 2,7 MB), 2004.
  • Chow, Bennett, Peng Lu, and Lei Ni. Hamilton's Ricci flow. — American Mathematical Soc., 2006.
Источник —

Same as Поток Риччи