Interested Article - Космологическое красное смещение

Космологическое (метагалактическое) красное смещение — наблюдаемое для всех далёких источников ( галактики , квазары ) понижение частот излучения , объясняемое как динамическое удаление этих источников друг от друга и, в частности, от нашей Галактики , то есть как нестационарность (расширение) Метагалактики .

История обнаружения

Красное смещение для галактик было обнаружено американским астрономом Весто Слайфером в 1912 1914 годах ; в 1929 году Эдвин Хаббл открыл, что красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла ). Несмотря на то, что, как выяснилось позже, проведённые им измерения оказались неточными и, по сути, не имеющими отношения к космологическому красному смещению (расширение Вселенной начинает сказываться на гораздо больших расстояниях), как показали более поздние измерения, «открытый» им закон действительно имеет место.

Хотя предлагались различные объяснения наблюдаемого смещения спектральных линий , например, гипотеза утомлённого света , только общая теория относительности даёт непротиворечивую картину, объясняющую все наблюдения. Данное объяснение этого явления является общепринятым.

Сущность явления

Часто космологическое красное смещение связывают с эффектом Доплера , который связывают с движением галактик друг относительно друга. Однако согласно ОТО , космологическое красное смещение происходит несколько по-другому: оно связано с расширением пространства. В наблюдаемое красное смещение от галактик вносят вклад как космологическое красное смещение из-за расширения пространства Вселенной, так и красное или синее смещения эффекта Доплера вследствие собственного движения галактик. При этом на больших расстояниях вклад космологического красного смещения становится преобладающим .

Образование космологического красного смещения можно представить так: рассмотрим свет — электромагнитную волну, идущую от далёкой галактики. В то время как свет летит через космос, пространство расширяется. Вместе с ним расширяется и волновой пакет. Соответственно, изменяется и длина волны. Если за время полёта света пространство расширилось в два раза, то длина волны и волновой пакет также увеличатся в два раза.

Расширение пространства

Общепринятая космологическая теория, объясняющая красное смещение, основана на общей теории относительности . Предполагается, что в однородной и изотропной Вселенной интервал между двумя событиями в сопутствующих координатах имеет следующий вид:

где скорость света , а — элемент квадрата координатного расстояния. В случае плоского пространства он имеет евклидовый вид . Кроме этого рассматриваются пространства с положительной или отрицательной кривизной . Масштабный фактор является (в расширяющейся Вселенной) растущей со временем функцией. Явный вид этой функции определяется уравнениями Эйнштейна и значениями плотности вещества и энергии, которые распределены равномерно в координатах . Эти координаты называют сопутствующими, так как предполагается, что вещество в среднем неподвижно относительно этих координат. Образно говоря, каждая частичка вещества является галактикой, «привязанной» к конкретным координатам сопутствующего пространства. При расширении пространства физическое расстояние между галактиками увеличивается, хотя их сопутствующие координаты остаются неизменными. Наглядно этот процесс можно представить как растяжение «резиновой плёнки» с «приклеенными» к ней галактиками. Для плоского 2-мерного пространства эта плёнка растягивается в плоскости. Моделью сферического 2-мерного пространства является поверхность надувающейся сферы. Для 2-мерных обитателей такой сферы расстояние между всеми галактиками увеличивается во всех точках сферы и нигде нет центра, от которого удаляются галактики.

Параметр красного смещения

При описании эффекта космологического красного смещения удобно от физического времени перейти к координатному , определяемому соотношением . Тогда в одномерном случае можно записать

где — радиальная координата сопутствующего пространства в направлении источника. Распространению световых сигналов соответствует случай нулевого интервала , или . Поэтому в координатных величинах траектория светового сигнала линейна: . Пусть удалённый источник, расположенный в координате в момент времени в прошлом испускает два последовательных сигнала с промежутком . В начало координат , в котором находится наблюдатель, эти сигналы приходят в настоящий момент времени . В силу линейности траектории промежуток координатного времени между ними будет таким же, как и при испускании . Возвращаясь к физическим интервалам времени это соотношение можно записать следующим образом:

Считая, что каждый сигнал является максимумом периодической электромагнитной волны с частотой и длиной волны , можно записать

Все величины, помеченные индексом 0, относятся к моменту приёма волны . Так как в расширяющейся Вселенной , то , и длина волны принимаемого сигнала больше, чем излучённого. Величина , называемая параметром красного смещения, равна относительному увеличению длины волны принимаемого электромагнитного сигнала.

В процессе расширения Вселенной изменяется не только длина (частота) электромагнитных волн, испущенных удалёнными от наблюдателя источниками. Так как , то процессы (не обязательно периодические), протекающие в удалённых объектах, выглядят замедленными. В частности на множитель необходимо подправлять кривые светимости сверхновых типа Ia , являющихся « стандартными свечами » при проведении космологических наблюдений. Более удалённые сверхновые после взрыва гаснут медленнее, чем более близкие.

Динамика изменения функции в рамках ОТО обычно такова, что в некоторый фиксированный момент в прошлом (для которого выбирается начало отсчёта времени ) масштабный фактор равен нулю: . Свет, испущенный в этот момент, имеет красное смещение . На самом деле ранняя Вселенная была очень плотной и непрозрачной для излучения. Наблюдаемое в настоящее время реликтовое излучение испущено в момент времени, соответствующий эпохе рекомбинации с . Наиболее удалённые, обнаруженные в настоящее время, сверхновые типа Ia обладают красными смещениями . Для удалённых квазаров эта величина может достигать , рекордное значение в имеет компактная галактика UDFj-39546284 при удалённости млрд световых лет

Расстояния в космологии

Расстояния до удалённых объектов непосредственно не могут быть измерены. Обычно изучается зависимость той или иной характеристики объекта (свечения, угловых размеров, и т. п.) от параметра красного смещения . В результате возникают различные варианты определения расстояния (фотометрическое расстояние, угловое расстояние и т. д.). Все они являются модельными, в том смысле, что зависят от параметров космологической модели (то есть от явного вида функции ).

Так, если есть объект с известной светимостью (стандартная свеча), то создаваемая им освещённость на большом расстоянии уменьшается в силу трёх факторов. 1) Поток фотонов на единицу поверхности сферы, окружающей источник, тем меньше, чем больше площадь сферы. В евклидовом пространстве она равна , где — физический радиус сферы в момент пересечения её фотонами (их приём наблюдателем). Для пространства положительной кривизны площадь сферы равна , а для отрицательной — . 2) Частота (энергия) фотонов уменьшается в раз. 3) Интенсивность излучения (число фотонов в единицу времени) также снижается в , так как процессы на удалённом источнике выглядят более замедленными. В результате освещённость (поток световой энергии в единицу времени на единичную площадку) равен

где пк — фиксированное расстояние, на котором источник создаёт освещённость , а зависит от выбора модели (пространство с положительной, нулевой или отрицательной кривизной).

Сопутствующая координата источника связана с его красным смещением , то есть . Эта зависимость однозначно определяется масштабным фактором . Фотометрическим расстоянием до источника называют . В этом случае выполняется классическая зависимость убывания светимости (стационарное евклидово пространство).

Если известны физические размеры объекта , то расстояние к нему можно определить при помощи его угловых размеров (угла , под которым виден объект). Длина окружности, проходящей через объект в момент излучения света, равна . Вся окружность соответствует углу , поэтому отношение к длине окружности даёт угол в радианах, под которым виден объект:

Угловым расстоянием называют классическое отношение в неизменном евклидовом пространстве. Угловое и фотометрическое расстояние связаны следующим образом:

и зависят от космологического красного смещения.

Измерение внегалактических расстояний

Вплоть до 1950-х годов внегалактические расстояния ( измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение , определённое по этим расстояниям, получилось сильно завышенным. В начале 1970-х годов для постоянной Хаббла было принято значение км/(с·Мпк), обратная величина млрд лет. По результатам наблюдений в 2005 году значение принято равным (72 ± 3) км/(с·Мпк).

Фотографирование спектров слабых (далёких) источников для измерения красного смещения, даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения соответствующие скорости км/с и расстоянию свыше 1 Гпк. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10 %, то есть такая же, как погрешность определения ). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются и больше. При смещениях используя формулу , получают скорость км/с. На таких расстояниях уже сказываются специфические космологические эффекты — и кривизна пространства-времени ; в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний — расстояние по красному смещению — составляет здесь Гпк), поскольку расстояния зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. Поэтому в качестве характеристики расстояния до столь удалённых объектов обычно пользуются просто величиной красного смещения. На апрель 2022 года объектом с максимальным красным смещением является галактика HD1 .

Красное смещение объясняется как расширение всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной .

См. также

Примечания

  1. А. В. Засов, К. А. Постнов. Галактики и скопления галактик // . — Фрязино: Век 2, 2006. — С. . — ISBN 5-85099-169-7 .
  2. от 16 января 2015 на Wayback Machine .

Ссылки

  • .
  • .
  • G. A. Tammann, B. Reindl, (англ.) .
  • G. A. Tammann, (англ.) .
  • — вычисление времени, которое свет шёл от объекта по его красному смещению: надо ввести красное смещение ( z ), установить значения космологических параметров (на 2015 год — H 0 = 67,74 и Ω M = 0,3089) и нажать кнопку «Flat».
Источник —

Same as Космологическое красное смещение