Interested Article - Электросвязь

Электросвя́зь (телекоммуника́ции) — разновидность связи , способ передачи информации с помощью электромагнитных сигналов , например, посредством тока по металлическим кабелям , излучения в оптическом диапазоне ( в атмосфере или по волоконно-оптическому кабелю ), излучения в радиодиапазоне .

Принцип электросвязи основан на преобразовании сигналов сообщения ( звук , текст , оптическая информация ) в первичные электрические сигналы. В свою очередь, первичные электрические сигналы при помощи передатчика преобразуются во вторичные электрические сигналы, характеристики которых хорошо согласуются с характеристиками линии связи . Далее посредством линии связи вторичные сигналы поступают на вход приёмника . В приёмном устройстве вторичные сигналы обратно преобразуются в сигналы сообщения в виде звука, оптической или текстовой информации.

В конце XIX века , с новаторских открытий Николы Теслы и Александра Попова , началось развитие беспроводной связи . Другими первопроходцами в данной области являются: Чарльз Уитстон и Самюэл Морзе (телеграф), Александр Грэхем Белл (телефон), Эдвин Армстронг и Ли де Форест (радио), Джон Бэрд , Владимир Зворыкин , Семён Катаев (телевидение).

Количество переданной информации через двусторонние мировые сети постоянно возрастает. Под руководством Мартина Гилберта учёными университета Южной Калифорнии были проведены исследования и анализ хранения, обработки и передачи информации за 1986—2007 годы . В частности было выявлено, что суммарные запасы данных всего человечества оценивались в тот период примерно в 295 эксабайт . В настоящее время цифровое хранение информации доминирует над аналоговым, хотя до 2002 года человечество хранило информацию в основном в аналоговой форме . В 2007 году посредством радио и телевидения было передано примерно 1,9 зеттабайт информации (что эквивалентно прочтению каждым человеком примерно 174 газет в день), а персональное общение людей достигло примерно 65 эксабайт (соответствует пересказу каждым человеком содержания примерно 6 газет в день) .

С учётом данного роста, электросвязь играет всё большую роль в развитии мировой экономики. Сектор мировой телекоммуникационной индустрии составил в 2012 году около 4,7 триллиона долларов . Выручка крупнейших телекоммуникационных компаний в России на 2011 год составила более 1 триллиона 240 миллиардов рублей , что составляет 2,28 % ВВП России .

Количество переданной информации

(персональное общение)

Дата
Количество информации
1986 281 петабайт
1993 471 петабайт
2000 2,2 эксабайт
2007 65 эксабайт

Этимология

Слово «электросвязь» происходит от нов.-лат. electricus и др.-греч. ἤλεκτρον (электр, блестящий металл; янтарь) и глагола «вязать». Синонимом является слово «телекоммуникации» ( англ. telecommunication , от фр. télécommunication), употребляемое в англоговорящих странах . Слово télécommunication , в свою очередь, происходит от греческого tele- (τηλε-) — «дальний» и от лат. communicatio — сообщение, передача (от лат. communico — делаю общим) , то есть значение этого слова включает в себя и неэлектрические виды передачи информации (с помощью оптического телеграфа , звуков , огня на сторожевых башнях , почты ).

Классификация электросвязи

Электросвязь является объектом изучения научной дисциплины .

По виду передачи информации все современные системы электросвязи условно классифицируются на предназначенные для передачи звука , видео , текста .

В зависимости от среды передачи выделяют проводную связь , волоконно-оптическую связь и радиосвязь .

В зависимости от назначения сообщений виды электросвязи могут быть квалифицированы на предназначенные для передачи информации индивидуального и массового характера.

По временным параметрам виды электросвязи могут быть работающими в реальном времени либо осуществляющими отложенную доставку сообщений.

Основными первичными сигналами электросвязи являются: телефонный , звукового вещания , факсимильный , телевизионный , телеграфный , передачи данных .

Типы связи

В зависимости от инженерного способа организации линии связи разделяются на:

  • спутниковые;
  • воздушные;
  • наземные;
  • подводные;
  • подземные.

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную ( фиксированную ) и подвижную связь ( мобильную , связь с подвижными объектами — СПО).

В зависимости от типа передаваемого сигнала различают аналоговую и цифровую связь .

  • Аналоговая связь — это передача непрерывного сигнала .
  • Цифровая связь — это передача информации в дискретной форме ( цифровом виде ). Цифровой сигнал по своей физической природе является аналоговым, однако передаваемая с его помощью информация определяется конечным набором уровней сигнала. Для обработки цифрового сигнала применяются численные методы.

Дискретные сообщения могут передаваться аналоговыми каналами и наоборот. В настоящее время цифровая связь вытесняет аналоговую (происходит оцифровка ), поскольку аналоговые сигналы перед отправкой могут быть преобразованы в дискретные и после приема восстановлены без существенных потерь. Условия, обеспечивающие возможность такого преобразования, задаются теоремой Котельникова .

Сигнал

Аналоговый сигнал — физическая величина , изменение ( модуляция ) которой в пространстве и во времени отображает передаваемое сообщение. Например, изменения напряжения (или тока, частоты, фазы и т. п.) отражают процесс речи. Аналоговый сигнал имеет следующие характеристики:

Объёмом сигнала является произведение V = FHT. В процессе передачи сигнала могут происходить изменения измерений как с сохранением объёма, так и без. Это происходит вследствие следующих преобразований сигнала:

  • Ограничение — изъятие из передачи одной или нескольких частей сигнала без сохранения информации, которая содержалась в изъятых частях. Например, ограничение речевого канала диапазоном 300—3400 Гц ( канал тональной частоты ).
  • Трансформация — изменения одного или нескольких измерений за счёт изменения другого или других измерений с сохранением неизменного объёма (как у кубика пластилина). Например, уменьшить время передачи можно, увеличив ширину спектра сигнала или динамический диапазон, либо и то, и другое.
  • Компандирование — включает два процесса, от которых пошло название: компрессия (сжатие) и экспандирование (расширение). На передающей стороне происходит сжатие сигнала в одном или нескольких измерениях, на приёмной — восстановление. Например, «выкусывание» пауз в речи на передающей стороне и восстановление на приёмной.

Линия связи

Цепь связи — проводники или оптоволокно, используемые для передачи одного сигнала. В радиосвязи то же понятие имеет название ствол . Различают кабельную цепь — цепь в кабеле и воздушную цепь — подвешена на опорах.

Линия связи (ЛС) в узком смысле — физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных и промежуточной аппаратуры. В широком смысле — совокупность физических цепей и (или) линейных трактов систем передачи, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения . Линия содержит одну и более цепей связи (стволов). Сигнал, действующий в линии, называется линейным . Различают два основных типа ЛС:

Тракт — совокупность оборудования и среды, формирующих специализированные каналы , имеющие определённые стандартные показатели: полоса частот, скорость передачи и т. п.

Канал связи

Для обеспечения эффективного использования цепей связи на них с помощью каналообразующего оборудования (КОО) организуются каналы связи . В некоторых случаях линия, цепь связи и канал связи совпадают (одна линия, одна цепь и один канал), в некоторых канал состоит из нескольких линий/цепей (как последовательно, так и параллельно). Каналы могут вкладываться друг в друга (групповой канал). Сигнал, «содержащий» несколько индивидуальных каналов, называется групповым сигналом . Каналы можно разделить на непрерывные (аналоговые) и дискретные (цифровые).

Каналы связи по направлению передачи подразделяются на:

  • симплексные — то есть допускающие передачу данных только в одном направлении, пример — радиотрансляция, телевидение;
  • полудуплексные — то есть допускающие передачу данных в обоих направлениях поочерёдно , пример — рации;
  • дуплексные — то есть допускающие передачу данных в обоих направлениях одновременно , пример — телефон.

Разделение (уплотнение) каналов

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны:

  • частотное разделение каналов (ЧРК, FDM) — каждому каналу выделяется определённый диапазон частот.
  • временное разделение каналов (ВРК, TDM) — каждому каналу выделяется квант времени ( таймслот ).
  • (КРК, CDMA ) — разделение каналов по форме сигнала, каждому каналу присвоен сигнал определённой формы; для выделения нужного сигнала в каждом приёмнике используется коррелятор, который вычисляет скалярное произведение группового сигнала и опорного сигнала, присвоенного данному приёмнику,
  • спектральное разделение каналов (СРК, WDM) — разделение каналов по длине волны.

Возможно комбинировать методы, например ЧРК+ВРК и т. п.

Оборудование

Телекоммуникационное оборудование :

Сеть связи

Сеть (система) электросвязи — совокупность терминальных устройств, линий связи и узлов связи, функционирующих под единым управлением. Например: компьютерная сеть , телефонная сеть .

В общем виде в систему связи входят:

  • терминальное оборудование : оконечное оборудование , терминальное устройство (терминал), оконечное устройство, источник и получатель сообщения;
  • устройства преобразования сигнала (УПС) с обоих концов линии.

Терминальное оборудование обеспечивает первичную обработку сообщения и сигнала, преобразование сообщений из вида, в котором их предоставляет источник (речь, изображение и т. п.) в сигнал (на стороне источника, отправителя) и обратно (на стороне получателя), усиление и т. п.

Устройства преобразования сигнала могут обеспечивать защиту сигнала от искажений, формирование канала (каналов), согласование группового сигнала (сигнала нескольких каналов) с линией на стороне источника, восстановление группового сигнала из смеси полезного сигнала и помех, разделение его на индивидуальные каналы, обнаружение ошибок и коррекцию на стороне получателя. Для формирования группового сигнала и согласования с линией используется модуляция .

Линия связи может содержать такие устройства преобразования сигнала, как усилители и регенераторы . Усилитель просто усиливает сигнал вместе с помехами и передаёт дальше, используется в аналоговых системах передачи (АСП). Регенератор («переприёмник») — производит восстановление сигнала без помех и повторное формирование линейного сигнала, используется в цифровых системах передачи (ЦСП). Усилительные/регенерационные пункты бывают обслуживаемыми и необслуживаемыми (ОУП, НУП, ОРП и НРП соответственно).

В ЦСП терминальное оборудование называется ООД ( оконечное оборудование данных , DTE), УПС — АКД ( аппаратура окончания канала данных или оконечное оборудование линии связи , DCE). Например, в компьютерных сетях роль ООД выполняет компьютер , а АКД — модем .

Стандартизация

Стандарты в мире связи исключительно важны, так как оборудование связи должно уметь взаимодействовать друг с другом. Существует несколько международных организаций, публикующих стандарты связи. Среди них:

Кроме того, нередко стандарты (как правило, де-факто) определяются лидерами индустрии телекоммуникационного оборудования.

См. также

Примечания

  1. ↑ , Martin Hilbert and Priscila López (2011), Science , 332(6025), 60-65; free access to the study through here: martinhilbert.net/WorldInfoCapacity.html
  2. от 28 марта 2010 на Wayback Machine , Internet Engineering Task Force, June 2010.
  3. , Internet Engineering Task Force, June 2012.
  4. CNews Analytics. . — CNews, 2012.
  5. (неопр.) . ФГУП РАМИ «РИА Новости» (31 января 2012). Дата обращения: 21 ноября 2012. Архивировано из 22 января 2015 года.
  6. Макс Фасмер. = Russisches etymologisches Worterbuch / перевод с немецкого и дополнения О. Н. Трубачева. — 2-е, стереотипное. — М. : Прогресс, 1986. — Т. 1—4. — 50 000 экз.
  7. Jean-Marie Dilhac. (англ.) (2004).
  8. Telecommunication , tele- and communication , (2nd edition), 2005.
  9. К.К. Васильев, В.А. Глушков, А.В. Дормидонтов, А.Г. Нестеренко. Теория электрической связи: учебное пособие / под общ. ред. К.К. Васильева. — Ульяновск: УлГТУ, 2008. — 452 с.
  10. ГОСТ 22348

Литература

  • Системы и сети передачи информации, Москва, «Радио и Связь», 2001.
  • Многоканальная связь, под ред. И. А. Аболица, М., 1971.
  • Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1—2, М., 1968—69.
  • Давыдов Г. Б. , Рогинекий В. Н. , Толчан А. Я. , Сети электросвязи, М., 1977.
  • Давыдов Г. Б. , Электросвязь и научно-технический прогресс, М., 1978.
  • Емельянов Г. А. , Шварцман В. О. , Передача дискретной информации и основы телеграфии, М., 1973.
  • Лившиц Б. С. , Мамонтова Н. П. , Развитие систем автоматической коммутации каналов, М., 1976.
  • Румпф К. Г. , Барабаны, телефон, транзисторы, пер. с нем., М., 1974.
  • Чистяков Н. И. , Хлытчиев С. М. , Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968.

Ссылки

Same as Электросвязь