КМОП
- 1 year ago
- 0
- 0
КМОП (комплементарная структура металл — оксид — полупроводник; англ. CMOS, complementary metal–oxide–semiconductor) — набор полупроводниковых технологий построения интегральных микросхем и соответствующая ей схемотехника микросхем. Подавляющее большинство современных цифровых микросхем — КМОП.
В более общем случае название — КМДП (со структурой металл — диэлектрик — полупроводник). В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями ( ТТЛ , ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения логических состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами ( N-МОП , P-МОП ) является наличие как n-, так и p-канальных полевых транзисторов, локализованных в одном месте кристалла. Вследствие меньшего расстояния между элементами, КМОП-схемы обладают бо́льшим быстродействием и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки на поверхности кристалла.
По аналогичной технологии выпускаются дискретные полевые транзисторы с изолированным затвором (MOSFET, metal–oxide–semiconductor field-effect transistor).
Схемы КМОП в 1963 изобрёл из компании Fairchild Semiconductor , первые микросхемы по технологии КМОП были созданы в 1968 . Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ , поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.
К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем были достигнуты скорость переключения и плотность монтажа, недостижимые в технологиях, основанных на биполярных транзисторах .
Ранние КМОП-схемы были очень уязвимы для электростатических разрядов . Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.
Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий . Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний .
Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП.
В схеме нет никаких нагрузочных резисторов , поэтому в статическом состоянии через КМОП-схему протекают только токи утечки через закрытые транзисторы, и энергопотребление очень низкое. При переключениях электрическая энергия тратится в основном на перезаряд ёмкостей затворов и проводников, так что потребляемая (и рассеиваемая) мощность пропорциональна частоте этих переключений (например, тактовой частоте процессора).
На рисунке конфигурации микросхемы 2И-НЕ показано, что в ней используются два двухзатворных полевых транзистора с разным типом проводимости канала. Верхний двухзатворный полевой транзистор формирует высокий уровень на выходе логического элемента, если любой из затворов имеет низкий уровень, а нижний двухзатворный полевой транзистор формирует высокий уровень на выходе логического элемента, если оба затвора имеют высокий уровень.
Следует отметить, что, поскольку переключение n-канальных и p-канальных транзисторов имеет конечное время, на короткое время оба типа транзисторов могут быть открыты, и между цепями питания возникает импульсный сквозной ток. Это приводит к повышению энергопотребления.
Так как затворы МДП-транзисторов имеют большое входное сопротивление, электростатический разряд может привести к пробою затвора и выходу микросхемы из строя. Для защиты от статического электричества каждый вывод КМОП-микросхемы оснащают защитной схемой, в которую входят диоды с низким напряжением пробоя, соединяющие каждый вход с шинами питания.
Для более гибкого применения у ряда производителей существуют также особые семейства, в которых каждая ИМС включает всего 1 логический элемент в 5..6-выводном корпусе, что бывает полезно для конструкций с малым количеством разных элементов и минимальным размером платы (например: 74LVC1G00GW фирмы NXP ; SOT353 -1 Single 2-Input Positive-AND Gate )