Теория гомоцентрических сфер
- 1 year ago
- 0
- 0
Гомотопические группы сфер — один из основных объектов изучения теории гомотопий , области алгебраической топологии . Гомотопические группы сфер классифицируют отображения между многомерными сферами с точностью до непрерывной деформации. Гомотопические группы сфер являются дискретными алгебраическими объектами, а именно конечнопорождёнными абелевыми группами . Несмотря на то, что классификация конечнопорождённых абелевых групп очень проста, точная структура гомотопических групп сфер до конца неизвестна.
Их нахождение было одним из наиболее важных направлений развития топологии и математики в целом в 1950—60-х годах, вплоть до создания . Причиной этого было как то, что гомотопические группы сфер являются базовыми топологическими инвариантами , понимание которых приводит к лучшему пониманию топологических пространств в целом, так и наличие большого числа сложных закономерностей в их структуре. Результатом стало как нахождение некоторых общих закономерностей, таких как сфер и J-гомоморфизм , так и вычисление групп для малых значений параметров.
Многомерная сфера размерности — это топологическое пространство , которое можно представлять как геометрическое место точек -мерного евклидова пространства , удалённых от начала координат на расстояние 1. В частности, — это окружность , а — обычная двумерная сфера .
Если — любое топологическое пространство с отмеченной точкой , то его -тая гомотопическая группа — это множество отображений из в , переводящих в , рассмотренное с точностью до гомотопий , то есть непрерывных шевелений, которые к тому же должны сохранять отмеченную точку. В частности, — это фундаментальная группа , то есть группа замкнутых путей в топологическом пространстве с операцией композиции . В многомерном случае это множество также можно снабдить структурой группы, при этом, в отличие от фундаментальной группы, при группа будет коммутативной .
Любое отображение из сферы меньшей размерности в сферу большой размерности можно стянуть в точку, поэтому группы при . Однако уже фундаментальная группа окружности является бесконечной циклической группой . Её элементы, то есть отображения из окружности в себя с точностью до гомотопии, однозначно задаются числом оборотов образа окружности вокруг её центра, и при композиции путей числа оборотов складываются. Аналогично одномерному случаю, гомотопическая группа отображений из -мерной сферы в себя является бесконечной цикличной. Тем не менее, устройство группы интуитивно неочевидно: она порождена расслоением Хопфа .
π 1 | π 2 | π 3 | π 4 | π 5 | π 6 | π 7 | π 8 | π 9 | π 10 | π 11 | π 12 | π 13 | π 14 | π 15 | π 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S 1 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S 2 | 0 | Z | Z | Z 2 | Z 2 | Z 12 | Z 2 | Z 2 | Z 3 | Z 15 | Z 2 | Z 2 2 | Z 12 × Z 2 | Z 84 × Z 2 2 | Z 2 2 | Z 6 |
S 3 | 0 | 0 | Z | Z 2 | Z 2 | Z 12 | Z 2 | Z 2 | Z 3 | Z 15 | Z 2 | Z 2 2 | Z 12 × Z 2 | Z 84 × Z 2 2 | Z 2 2 | Z 6 |
S 4 | 0 | 0 | 0 | Z | Z 2 | Z 2 | Z × Z 12 | Z 2 2 | Z 2 2 | Z 24 × Z 3 | Z 15 | Z 2 | Z 2 3 | Z 120 × Z 12 × Z 2 | Z 84 × Z 2 5 | Z 2 6 |
S 5 | 0 | 0 | 0 | 0 | Z | Z 2 | Z 2 | Z 24 | Z 2 | Z 2 | Z 2 | Z 30 | Z 2 | Z 2 3 | Z 72 × Z 2 | Z 504 x Z 2 2 |
S 6 | 0 | 0 | 0 | 0 | 0 | Z | Z 2 | Z 2 | Z 24 | 0 | Z | Z 2 | Z 60 | Z 24 × Z 2 | Z 2 3 | Z 72 x Z 2 |
S 7 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z 2 | Z 2 | Z 24 | 0 | 0 | Z 2 | Z 120 | Z 2 3 | Z 2 4 |
S 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z 2 | Z 2 | Z 24 | 0 | 0 | Z 2 | Z × Z 120 | Z 2 4 |