Interested Article - Плосконосая тривосьмиугольная мозаика

Плосконосая тривосьмиугольная мозаика
Конформно-евклидова модель гиперболической плоскости
Тип гиперболическая однородная мозаика
Конфигурация вершины 3.3.3.3.8
Символ Шлефли sr{8,3} или s { 8 3 } {\displaystyle s{\begin{Bmatrix}8\\3\end{Bmatrix}}}
| 8 3 2
Диаграмма Коксетера — Дынкина , или
Симметрии вращения [8,3] + , (832)
[8,4] + , (842)
[(4,4,4)] + , (444)
Двойственная мозаика Цветочная пятиугольная мозаика порядка 8-3
Свойства вершинно-транзитивная
хиральная

Плосконосая восьмиугольная мозаика порядка 3 — это полуправильная мозаика на гиперболической плоскости. Существует четыре треугольника и один восьмиугольник в каждой вершине. Символ Шлефли мозаики — sr{8,3} .

Иллюстрации

Представлена хиральная пара с отсутствующими рёбрами между чёрными треугольниками:

Связанные многогранники и мозаики

Эта полуправильная мозаика входит в последовательность плосконосых многогранников и мозаик с вершинной фигурой (3.3.3.3. n ) и диаграммой Коксетера — Дынкина . Эти фигуры и их двойственные имеют вращательную (n32). Фигуры присутствуют на евклидовой плоскости (при n=6) и на гиперболических плоскостях для бо́льших n. Можно считать последовательность начинающейся с n=2, в этом случае грани вырождаются в двуугольники .

n 32 симметрии плосконосых мозаик: 3.3.3.3.n
Симметрия
Сферическая Евклидоваn Компактная гиперболич. Паракомп.
232 332 432 532 632 732 832 ∞32
Плосконосые
фигуры
Конфигурация 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6
Фигуры
Конфигурация V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

Из построения Витхоффа следует, что существует десять гиперболических однородных мозаик , основывающихся на правильной восьмиугольной мозаике.

Если нарисовать мозаики с исходными красными гранями, жёлтыми вершинами и синими рёбрами, существует 10 форм.

См. также

Примечания

Литература

Ссылки

Same as Плосконосая тривосьмиугольная мозаика