Ферросиликомарганец
- 1 year ago
- 0
- 0
25 |
Марганец
|
|
|
3d 5 4s 2 |
Ма́рганец ( химический символ — Mn , от лат. Manganum ) — химический элемент 7-й группы (по устаревшей классификации — побочной подгруппы седьмой группы, VIIB), четвёртого периода периодической системы химических элементов Д. И. Менделеева , с атомным номером 25.
Простое вещество марганец — это твёрдый, но одновременно с этим, хрупкий переходный металл серебристо - белого цвета. Относится к цветным металлам .
Один из основных минералов марганца — пиролюзит — был известен в древности как чёрная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка , а тот факт, что он не притягивается магнитом , Плиний Старший объяснил женским полом чёрной магнезии, к которому магнит «равнодушен». В 1774 году шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану , который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» ( рус. марганец происходит от нем. Manganerz — марганцевая руда).
Марганец — 14-й элемент по распространённости на Земле , а после железа — второй тяжёлый металл , содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Массовая доля марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах , однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси ) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах, вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10 −7 —10 −6 %), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO 2 · x H 2 O) и опускается в нижние слои океана, формируя так называемые железомарганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди , никеля , кобальта ). Такие конкреции могут стать в будущем источником марганца для промышленности.
В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.
Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой .
Некоторые свойства приведены в таблице. Другие свойства марганца:
Окисленная
форма |
Восстановленная
форма |
Среда | E 0 , В |
---|---|---|---|
Mn 2+ | Mn | H + | −1,186 |
Mn 3+ | Mn 2+ | H + | +1,51 |
MnO 2 | Mn 3+ | H + | +0,95 |
MnO 2 | Mn 2+ | H + | +1,23 |
MnO 2 | Mn(OH) 2 | OH − | −0,05 |
MnO 4 2− | MnO 2 | H + | +2,26 |
MnO 4 2− | MnO 2 | OH − | +0,62 |
MnO 4 − | MnO 4 2− | OH − | +0,56 |
MnO 4 − | H 2 MnO 4 | H + | +1,22 |
MnO 4 − | MnO 2 | H + | +1,69 |
MnO 4 − | MnO 2 | OH − | +0,60 |
MnO 4 − | Mn 2+ | H + | +1,51 |
Характерные степени окисления марганца: 0, +2, +3, +4, +6, +7 (степени окисления +1, +5 малохарактерны, а степень окисления −1 встречает очень редко).
При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде:
Марганец при реакции с перегретым водяным паром, образует гидроксид, вытесняя водород :
При этом слой образующегося гидроксида марганца замедляет реакцию.
Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом , образуя различные по составу нитриды .
Углерод реагирует с расплавленным марганцем, образуя карбиды Mn 3 C и другие. Образует также силициды , бориды , фосфиды .
С соляной и серной кислотами реагирует по уравнению
С концентрированной серной кислотой реакция идёт по уравнению
С разбавленной азотной кислотой реакция идёт по уравнению
В щелочном растворе марганец устойчив.
Марганец образует следующие оксиды: MnO, Mn 2 O 3 , MnO 2 , MnO 3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn 2 O 7 .
Mn 2 O 7 в обычных условиях — жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn 2 O 7 разлагается со взрывом. Наиболее устойчивы оксиды Mn 2 O 3 и MnO 2 , а также комбинированный оксид Mn 3 O 4 (2MnO·Mn 2 O 3 , или соль Mn 2 MnO 4 ).
При сплавлении оксида марганца (IV) ( пиролюзит ) со щелочами в присутствии кислорода образуются манганаты :
Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция
Раствор окрашивается в малиновый цвет из-за появления аниона MnO 4 − , и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).
Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более чем до 20 %. Сама кислота и её соли ( перманганаты ) — сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).
При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия)
Под действием сильных окислителей ион Mn 2+ переходит в ион MnO 4 − :
Эта реакция используется для качественного определения Mn 2+ (см. в разделе «Определение методами химического анализа»).
При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа». В нейтральных или кислых водных растворах ион Mn 2+ образует окрашенный в бледно-розовый цвет аквакомплекс [Mn(H 2 O) 6 ] 2+ .
Соли MnCl 3 , Mn 2 (SO 4 ) 3 неустойчивы. Гидроксиды Mn(OH) 2 и Mn(OH) 3 имеют основный характер, MnO(OH) 2 — амфотерный. Хлорид марганца (IV) MnCl 4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора :
Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn 2 (CO) 10 .
Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF 3 , NO, N 2 , P(C 5 H 5 ) 3 ).
Месторождения:
Марганец является моноизотопным элементом — в природе существует только один устойчивый изотоп 55 Mn. Все другие изотопы марганца нестабильны и радиоактивны , они получены искусственно. Известны 25 радиоактивных изотопов марганца, имеющие массовое число А в диапазоне от 44 до 70. Наиболее стабильными из них являются 53 Mn (период полураспада T 1/2 = 3,7 млн лет ), 54 Mn ( T 1/2 = 312,3 суток ) и 52 Mn ( T 1/2 = 5,591 суток ). Преобладающим каналом распада лёгких изотопов марганца ( А < 55 ) является электронный захват (и иногда конкурирующий с ним позитронный распад ) в соответствующие изотопы хрома. У тяжёлых изотопов ( А > 55 ) основным каналом распада является β − -распад в соответствующие изотопы железа. Известны также 7 изомеров (метастабильных возбуждённых состояний) с периодами полураспада более 100 нс .
Марганец в виде ферромарганца применяется для раскисления стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу , что также улучшает свойства сталей. Введение до 12—13 % Mn в сталь (так называемая сталь Гадфильда ), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твёрдой и сопротивляющейся износу и ударам (т. н. « наклёп »). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn, применяемый при выплавке стали.
В 1920—1940-х годах применение марганца позволяло выплавлять броневую сталь. В начале 1950-х годов в журнале «Сталь» возникла дискуссия по вопросу о возможности снижения содержания марганца в чугуне, и тем самым отказа от поддержки определённого содержания марганца в процессе мартеновской плавки, в которой, вместе с В. И. Явойским и В. И. Баптизманским , принял участие Е. И. Зарвин, который на основе производственных экспериментов показал нецелесообразность существовавшей технологии. Позже он показал возможность ведения мартеновского процесса на маломарганцовистом чугуне. С пуском ЗСМК началась разработка передела низкомарганцовистых чугунов в конвертерах .
Сплав 83 % Cu , 13 % Mn и 4 % Ni ( манганин ) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр.
Марганец вводят в бронзы и латуни .
Значительное количество диоксида марганца потребляется при производстве марганцево- цинковых гальванических элементов , MnO 2 используется в таких элементах в качестве окислителя- деполяризатора .
Соединения марганца также широко используются как в тонком органическом синтезе (MnO 2 и KMnO 4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p - ксилола , окисление парафинов в высшие жирные кислоты).
Арсенид марганца обладает гигантским магнитокалорическим эффектом , усиливающимся под давлением.
Теллурид марганца — перспективный термоэлектрический материал ( термо-ЭДС 500 мкВ/К).
Марганец принадлежит к пятой аналитической группе катионов.
Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn 2+ , следующие:
1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):
Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.
Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.
2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):
Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H 2 O 2 .
3. Диоксид свинца PbO 2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn 2+ до MnO 4 − с образованием марганцевой кислоты малинового цвета:
Эта реакция даёт отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца провести эту реакцию не удаётся, так как избыток ионов Mn 2+ восстанавливает образующуюся марганцевую кислоту HMnO 4 до MnO(OH) 2 , и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn 2+ в MnO 4 − могут быть использованы другие окислители, например, персульфат аммония (NH 4 ) 2 S 2 O 8 в присутствии катализатора — ионов Ag + или висмутат натрия NaBiO 3 :
Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO 2 , а затем 5 капель концентрированной азотной кислоты HNO 3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO 4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.
При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO 3 , добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.
4. Сульфид аммония (NH 4 ) 2 S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:
Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.
Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.
Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом . Марганец оказывает влияние на рост, образование крови и функции половых желёз . Особо богаты марганцем листья свёклы и плоды дуриана — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.
Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также лёгкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект.
Токсическая доза для человека составляет 40 мг марганца в день. Летальная доза для человека не определена.
При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главными признаками отравления марганцем у животных являются угнетение роста, понижение аппетита, нарушение метаболизма железа и изменение функции мозга.
Сообщений о случаях отравления марганцем у людей, вызванных приёмом пищи с высоким содержанием марганца, нет. [ нет в источнике ] В основном отравление людей наблюдается в случаях хронической ингаляции больших количеств марганца на производстве . Оно проявляется в виде тяжёлых нарушений психики, включая гиперраздражительность, гипермоторику и галлюцинации — «марганцевое безумие». В дальнейшем развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.
Чтобы развилась клиническая картина хронического отравления марганцем, обычно требуется несколько лет. Она характеризуется достаточно медленным нарастанием патологических изменений в организме, вызываемых повышенным содержанием марганца в окружающей среде (в частности, распространение эндемического зоба, не связанного с дефицитом йода).