Interested Article - Зрение млекопитающих
- 2021-05-18
- 2
Зре́ние млекопита́ющих — процесс восприятия млекопитающими видимого электромагнитного излучения , его анализа и формирования субъективных ощущений , на основании которых складывается представление животного о пространственной структуре внешнего мира . Отвечает за данный процесс у млекопитающих зрительная сенсорная система , основы которой сложились ещё на раннем этапе эволюции хордовых . Её периферическую часть образуют органы зрения ( глаза ), промежуточную (обеспечивающую передачу нервных импульсов ) — зрительные нервы , а центральную — зрительные центры в коре головного мозга .
Распознавание визуальных стимулов у млекопитающих является результатом совместной работы органов зрения и головного мозга . При этом значительная часть зрительной информации обрабатывается уже на уровне рецепторов , что позволяет многократно сократить объём такой информации, поступающей к мозгу. Устранение избыточности количества информации неизбежно: если объём информации, поступающей на рецепторы зрительной системы, измеряется миллионами бит в секунду (у человека — порядка 1⋅10 7 бит/с), то возможности нервной системы по её обработке ограничены десятками бит в секунду .
Органы зрения у млекопитающих развиты, как правило, достаточно хорошо, хотя в их жизни они имеют меньшее значение, чем у птиц : обычно млекопитающие обращают мало внимания на неподвижные предметы, так что к стоящему без движения человеку даже столь осторожные звери, как лисица или заяц , могут подойти вплотную. Размеры глаз у млекопитающих относительно невелики; так, у человека масса глаз составляет 1 % от массы головы, в то время как у скворца достигает 15 %. Более крупные глаза имеют ночные звери (например, долгопят ) и животные, обитающие в открытых ландшафтах. У лесных зверей зрение не столь острое, а у роющих подземных видов ( кроты , гоферы , слепушонки , цокоры , златокроты ) глаза в большей или меньшей мере редуцированы, в некоторых случаях ( сумчатые кроты , слепыш , слепой крот ) даже затянуты кожистой перепонкой .
Строение глаза
Как и у других позвоночных , глаз млекопитающего развивается из переднего мозгового пузыря и имеет округлую форму ( глазное яблоко ). Снаружи глазное яблоко защищено белковой фиброзной оболочкой, передняя часть которой прозрачна ( роговица ), а остальная — нет ( склера ). Следующий слой — сосудистая оболочка , спереди переходящая в радужную оболочку с отверстием в центре — зрачком . Большая часть глазного яблока занята стекловидным телом , заполненным водянистой жидкостью. Поддержание формы глазного яблока обеспечивается за счёт жёсткой склеры и внутриглазного давления, создаваемого этой жидкостью. Эта водянистая жидкость регулярно обновляется: она выделяется в заднюю камеру глаза эпителиальными клетками цилиарного тела , откуда попадает в переднюю камеру через зрачок и далее попадает в венозную систему .
Через зрачок отражённый от объектов свет проникает внутрь глаза. Количество пропускаемого света определяется диаметром зрачка, просвет которого автоматически регулируется мышцами радужной оболочки. Хрусталик , удерживаемый на месте цилиарным пояском, фокусирует прошедшие через зрачок лучи света на сетчатке — внутреннем слое оболочки глаза, содержащем фоторецепторы — светочувствительные нервные клетки . Сетчатка состоит из нескольких слоёв (изнутри наружу): пигментный эпителий, фоторецепторы, горизонтальные клетки Кахаля, биполярные клетки, амакриновые клетки и ганглионарные клетки . Подробнее о строении сетчатки см. ниже.
Окружающие хрусталик мышцы обеспечивают аккомодацию глаза. У млекопитающих для достижения высокой резкости изображения хрусталик при наблюдении близких объектов принимает выпуклую форму, при наблюдении удалённых — почти плоскую . У пресмыкающихся и птиц аккомодация, в отличие от млекопитающих, включает не только изменение формы хрусталика, но и изменение расстояния между хрусталиком и сетчаткой. В целом способность глаза млекопитающего к аккомодации значительно уступает таковой у птиц: у человека она в детстве не превышает 13,5 дптр и заметно снижается с возрастом, а у птиц (особенно ныряющих) она может достигать 40—50 дптр . У мелких грызунов ( полёвки , мыши ) из-за незначительности обзора способность к аккомодации практически утрачена .
Роль защитных образований для глаз играют веки , снабжённые ресницами . У внутреннего угла глаза размещается гардерова железа , выделяющая жировой секрет (её нет у приматов ), а в наружном углу — слёзная железа , выделения которой (слёзная жидкость) омывают глаз. Слёзная жидкость улучшает оптические свойства роговицы, сглаживая шероховатости её поверхности, а также защищает её от пересыхания и других неблагоприятных воздействий . Эти железы наряду с веками и глазными мышцами относят к вспомогательному аппарату глаза .
Фоторецепторы
Среди фоторецепторов выделяют две основные разновидности — палочки и колбочки , причём палочки преобладают; так, у человека сетчатка содержит около 123 млн палочек и 7 млн колбочек . Палочки отвечают за восприятие только интенсивности света и обеспечивают ночное зрение , а при дневном зрении ведущую роль играют колбочки, позволяя животным не только воспринимать свет, но и различать цвета . Зрительные пигменты находятся в мембранных дисках колбочек и палочек .
Фоторецепторы содержат светочувствительные пигменты — опсины ; это — трансмембранные белки , относящиеся к семейству GPCR , 7 α-спиралей опсина пронизывают мембрану . С молекулой опсина связана молекула светоабсорбирующей молекулы — ретиналя (производное витамина А ). Ретиналь и опсин в совокупности образуют палочек — родопсин . Ретиналь имеет угловой цис - и линейный транс -изомеры , причём при возбуждении светом цис -изомер переходит в транс -изомер. Такое изменение конфигурации ретиналя дестабилизирует и активирует связанный с ним опсин. После передачи возбуждения специальные ферменты возвращают ретиналь в исходное цис -состояние .
Возбуждение от активированного опсина передаётся на G-белок , который активирует фермент фосфодиэстеразу . Этот фермент отрывает от натриевого канала мембраны палочки цГМФ , гидролизуя его до ГМФ . В результате этого натриевые каналы палочки закрываются, и клетка гиперполяризуется (таким образом, палочки запускается не , а гиперполяризацией). После этого в её синаптическом окончании, образующим синапс с расположенным после нейроном , не выделяется нейромедиатор глутамат (в темноте он, напротив, выделяется). В зависимости от типа некоторые из граничащих с палочками нейронов в ответ на выделение или невыделение глутамата гиперполяризуются, другие — деполяризуются. Обычно с палочками контактируют биполярные клетки (одна — с несколькими палочками), но вместо них здесь могут находиться горизонтальные или амакриновые клетки . От них возбуждение передаётся ганглионарным клеткам , которые сообщают его зрительному нерву .
Колбочки используют такой же механизм передачи сигнала, как и палочки, но с некоторыми различиями. Существует три типа колбочек, содержащих соответственно три типа зрительных пигментов — фотопсинов, или йодопсинов : красных, зелёных и синих. Они образуются в результате связывания ретиналя с тремя различными типами опсинов. Хотя эти опсины несильно отличаются друг от друга, они реагируют на свет c разными длинами волн , при этом их спектры поглощения частично перекрываются. Перекрывание спектров обеспечивает ощущение других цветов; например, при возбуждении красных и зелёных колбочек глаз видит жёлтый или оранжевый цвет — в зависимости от того, какого типа колбочки более стимулированы . В сетчатке имеются 3 типа ганглионарных клеток: М-клетки (α, или Y) — быстропроводящие, чувствительные к свету и особенно чувствительные к движению; P-клетки (β, или Х), которые обеспечивают высокое пространственное разрешение, стабильно реагируют на постоянный цвет и поэтому делают возможным анализ образов и цвета; W-клетки (или γ), которые регулируют диаметр зрачка и рефлекс быстрого скачкообразного движения глаз .
В отличие от пресмыкающихся и птиц , у млекопитающих колбочки не имеют светофильтров в виде цветных жировых капель . Фоторецепторов нет на оптическом диске, и этот участок называется слепым пятном поля зрения .
Наружная светочувствительная часть палочек и колбочек регулярно обновляется: старые мембранные диски на их поверхности сбрасываются и заменяются новыми дисками из внутренней части, а отброшенные диски поглощаются фагоцитами .
Впрочем, у млекопитающих цветовое зрение развито слабее, чем у птиц с их четырёхкомпонентным зрением: у подавляющего большинства млекопитающих зрение — двухкомпонентное , а трёхкомпонентное цветовое зрение имеется только у высших приматов ( узконосые и частично широконосые обезьяны ) . Так, европейская рыжая полёвка различает лишь красный и жёлтый цвета, а у опоссума , лесного хоря и некоторых других видов цветное зрение вообще не обнаружено . В то же время некоторые сумчатые , рукокрылые и грызуны способны видеть в ультрафиолетовом диапазоне .
Установлено, что за цветное зрение у позвоночных отвечают 4 , кодирующих опсины колбочек: SWS1, SWS2, Rh2, LWS. Все четыре семейства генов были выявлены у современных птиц, рыб и пресмыкающихся, у современных земноводных — лишь 3. У млекопитающих ситуация значительно сложнее. У современных однопроходных выявлены гены семейств SWS2 и LWS, а также нефункциональный ген из SWS1; у современных сумчатых имеются гены из SWS1 и LWS, а также, возможно, из Rh2. Современные плацентарные имеют гены опсинов только из семейств SWS1 и LWS .
В 1990-х гг. у млекопитающих был открыт третий тип фоторецепторов — светочувствительные ганглионарные клетки , содержащие , обладающий очень слабой чувствительностью к свету. В восприятии зрительных образов эти рецепторы практически не задействованы, но они участвуют в управлении циркадными ритмами и в регуляции размера зрачка .
Часть света, достигшего сетчатки, проходит через неё и поглощается пигментным эпителием сетчатки. У многих млекопитающих (особенно у ночных) эта оболочка образует, однако, блестящий слой — тапетум (или «зеркальце»), образованный эластичными волокнами или эндотелиальными клетками . Он отбрасывает лучи света обратно на сетчатку, снижая его потери . Наличие тапетума обусловливает кажущее свечение глаз млекопитающих в почти полной темноте. Такое «свечение» глаз характерно для многих млекопитающих, особенно хищных , в том числе и некоторых приматов , но у человека встречается как атавизм .
Зрительные пути и обработка сигнала
Итак, как отмечалось выше, аксоны ганглионарных клеток образуют зрительный нерв, который передаёт зрительную информацию от глаз в головной мозг . Каждый зрительный нерв располагается сзади от глазного яблока; его длина невелика, причём разные волокна зрительного нерва несут информацию от разных участков сетчатки. Существенно, что зрительные нервы от правого и левого глаз перекрещиваются, образуя частичный перекрёст зрительных нервов — зрительную хиазму , располагающуюся примерно в центре основания коры головного мозга . При этом нервные волокна, идущие от тех участков сетчатки, которые примыкают к носу, ведут в контралатеральное (противоположное) полушарие конечного мозга , а нервные волокна, отходящие от височных отделов сетчатки, ведут в ипсилатеральное полушарие; благодаря этому зрительная информация от каждого глаза поступает в оба полушария .
Помимо зрительного нерва, в промежуточную часть зрительной сенсорной системы входят подкорковые ганглии мозга и латеральные коленчатые тела . К числу подкорковых ганглиев мозга относят: среднего мозга , регулирующее диаметр зрачка ; верхние бугры четверохолмия , участвующие в глазодвигательной функции; супрахиазматическое ядро гипоталамуса , выступающее в роли генератора циркадных ритмов . Латеральные коленчатые тела, лежащие в таламусе , являются важнейшими среди подкорковых зрительных центров и вносят существенный вклад в обработку зрительной информации. Большинство аксонов ганглионарных клеток приходят именно в латеральные коленчатые тела, и лишь меньшая часть этих аксонов проецируются на подкорковые ганглии мозга .
Из латеральных коленчатых тел сигнал поступает в центральную часть зрительной сенсорной системы — зрительную кору . Зрительная кора подразделяется на первичную зрительную кору , расположенную в затылочной доле коры больших полушарий и иначе называемую стриарной корой , и экстрастриарную зрительную кору , состоящую из нескольких участков (зон), некоторые из которых располагаются также в височной и теменной долях . Первичная зрительная кора каждого полушария получает информацию от ипсилатерального наружного коленчатого тела, после чего информация передаётся по нескольким путям в различные зоны экстрастриарной зрительной коры. В результате зрительная информация по точкам проецируется на зрительную кору, где и происходит обработка характеристик изображения (цвета, формы, движения, глубины и др.), причём для целостного восприятия эти свойства должны быть интегрированы .
У многих млекопитающих хорошо развито бинокулярное зрение , основанное на формировании двух изображений , полученных каждым глазом, и их последующем сопоставлении. В ходе обмена информацией между обоими зрительными центрами два полученных изображения сливаются в одну трёхмерную картину .
Примечания
- , с. 35, 336.
- , с. 340—341.
- Воротников С. А. . Информационные устройства робототехнических систем. — М. : Изд-во МГТУ им. Н. Э. Баумана, 2005. — 384 с. — ISBN 5-7038-2207-6 . — С. 19—22.
- ↑ , с. 391.
- , с. 336.
- , с. 341—344.
- ↑ , с. 356.
- ↑ Джадд Д., Вышецки Г. . Цвет в науке и технике. — М. : Мир, 1978. — 592 с. — С. 16—18.
- , с. 209, 273, 391.
- , с. 360—362.
- Payne A. P. // Journal of Anatomy. — 1994. — Vol. 185 (Pt 1). — P. 1—49. — .
- , с. 389.
- ↑ , p. 1097.
- ↑ Terakita A. // Genome Biology. — 2005. — Vol. 6, № 3. — P. 213. — doi : . — .
- , p. 1096—1099.
- , p. 1099, 1100.
- , с. 370.
- , с. 360.
- Bowmaker J. K. // Eye (London, England). — 1998. — Vol. 12 (Pt 3b). — P. 541—547. — doi : . — .
- , с. 391.
- , p. 23.
- Jacobs G. H. // Phil. Trans. R. Soc. B. — 2009. — Vol. 364, № 1531. — P. 2957—2967. — doi : . 5 марта 2016 года.
- ↑ Тапетум — статья из Биологического энциклопедического словаря
- Locket N. A. // Proceedings of the Royal Society of London. Series B. — 1974. — Vol. 186, № 1084. — P. 281—290. — doi : . — .
- Хомская Е. Д. . Нейропсихология. 4-е изд. — СПб. : Питер, 2011. — 496 с. — ISBN 978-5-459-00730-5 . — С. 150.
- ↑ , p. 1099.
- ↑ , с. 370—371.
- ↑ , с. 79, 116.
Литература
На русском языке
- Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. — М. : Медицина, 2004. — 768 с. — ISBN 5-225-04858-7 .
- Дзержинский Ф. Я. , Васильев Б. Д., Малахов В. В. . Зоология позвоночных. 2-е изд. — М. : Издат. центр «Академия», 2014. — 464 с. — ISBN 978-5-4468-0459-7 .
- Зильбернагль С., Деспопулос А. . Наглядная физиология. — М. : БИНОМ. Лаборатория знаний, 2013. — 408 с. — ISBN 978-5-94774-385-2 .
- Константинов В. М., Наумов С. П. , Шаталова С. П. Зоология позвоночных. 7-е изд. — М. : Издат. центр «Академия», 2012. — 448 с. — ISBN 978-5-7695-9293-5 .
- Константинов В. М., Шаталова С. П. . Зоология позвоночных. — М. : Гуманитарный издательский центр ВЛАДОС, 2004. — 527 с. — ISBN 5-691-01293-2 .
- Лысов В. Ф., Ипполитова Т. В., Максимов В. И., Шевелёв Н. С. . Физиология и этология животных. 2-е изд. — М. : КолосС, 2012. — 605 с. — ISBN 978-5-9532-0826-0 .
- Ткаченко Б. И., Брин В. Б., Захаров Ю. М., Недоспасов В. О., Пятин В. Ф. . Физиология человека. Compendium / Под ред. Б. И. Ткаченко. — М. : ГЭОТАР-Медиа, 2009. — 496 с. — ISBN 978-5-9704-0964-0 .
На английском языке
- Campbell N. A., Reece J. B., Urry L. A. e. a. . Biology. 9th ed. — Benjamin Cummings, 2011. — 1263 p. — ISBN 978-0-321-55823-7 .
- Vaughan T. A., Ryan J. M., Czaplewski N. J. . Mammalogy. 5th ed. — Sudbury, Massachusetts: Jones & Bartlett Learning, 2011. — 750 p. — ISBN 978-0-7636-6299-5 .
Ссылки
- Чугунов, Антон. . // Сайт Biomolecula.ru (10 марта 2007). Дата обращения: 18 марта 2018.
- Чугунов, Антон. . // Сайт Biomolecula.ru (8 ноября 2007). Дата обращения: 18 марта 2018.
- Лебедев, Виктор. . // Сайт Biomolecula.ru (8 марта 2015). Дата обращения: 18 марта 2018.
- Чугунов, Антон. // Сайт Biomolecula.ru (1 марта 2013). Дата обращения: 18 марта 2018.
- Бозрова, Светлана; Посух, Ольга. // Сайт Biomolecula.ru (11 апреля 2017). Дата обращения: 18 марта 2018.
- 2021-05-18
- 2