Периплазматическое пространство
- 1 year ago
- 0
- 0
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизированный газ , одно из четырёх классических агрегатных состояний вещества .
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы . В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма ). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур он переходит в плазму, она называется четвёртым (после твёрдого , жидкого и газообразного ) агрегатным состоянием вещества.
Поскольку заряженные частицы в плазме обладают подвижностью , плазма обладает способностью проводить электрический ток . В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб , на расстояниях меньше которого квазинейтральность нарушается.
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году . Ленгмюр писал :
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учётом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы .
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство ). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы , находящееся в «неплазменном» состоянии ( жидком , твёрдом и газообразном ). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма ).
Наиболее типичные формы плазмы | ||
|
|
|
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:
Плазма обычно разделяется на идеальную и неидеальную , низкотемпературную и высокотемпературную , равновесную и неравновесную , при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Плазму делят на низкотемпературную (температура меньше миллиона K ) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние .
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры . Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность ).
Степень ионизации α определяется как , где n i — концентрация ионов, а n a — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме n e определяется очевидным соотношением: , где — — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма ). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества ». Примером может служить Солнце .
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов , то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является концентрация нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора .
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов ( ). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Плазму часто называют четвёртым состоянием вещества . Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение вопроса о том, является ли плазма отдельным агрегатным состоянием или же просто горячим газом. Большинство физиков считает, что плазма представляет собой нечто большее, чем газ, аргументируя это мнение следующим различиями:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость |
Крайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр . |
Очень высока
|
Число сортов частиц |
Один
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации , а друг с другом взаимодействуют только на сравнительно небольших расстояниях. |
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям |
Максвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей , согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. |
Может быть немаксвелловское
Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и . |
Тип взаимодействий |
Бинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки. |
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем , если использовать для их описания простые модели . Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц , из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана . Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.