Interested Article - Электромагнитное реле

Принцип действия реле

Электромагнитное реле реле , которое реагирует на величину электрического тока посредством притяжения ферромагнитного якоря или сердечника при прохождении тока через его обмотку.

Воспринимающий орган электромагнитного реле — обмотка и магнитная система с подвижной частью (якорем или сердечником). Исполнительный орган — контакты. Орган сравнения образуется подвижной частью и дополнительными грузами и пружинами (возвратными и контактными). По характеру движения подвижной системы электромагнитные реле разделяются на втяжные и поворотные. Как втяжные так и поворотные реле могут быть уравновешенными или неуравновешенными по отношению к воздействующим на них ускорениям.

Во втяжных электромагнитных реле имеется подвижный сердечник, который движется в направляющей втулке из немагнитного материала. Конфигурация «стопы» неподвижного сердечника и обращенного к нему конца подвижного сердечника определяют вид тяговой характеристики реле. Если втяжное реле не имеет магнитопровода, то его часто называют соленоидным.

В поворотных электромагнитных реле имеется подвижный якорь. Если угол поворота небольшой (5-10°), то поворотное реле часто называют клапанным.

Основные характеристики воспринимающего органа электромагнитного реле — тяговая и механическая (нагрузочная). Тяговая характеристика определяется изменением усилия притяжения при изменении рабочего воздушного зазора δ между неподвижной и подвижной (якорем или сердечником) частями магнитной системы при определённой намагничивающей силе обмотки . Она определяется для реле постоянного тока, как:

Принцип действия электромагнитного реле с поворотной подвижной системой, сверху — нормальное (обесточенное) состояние реле, снизу — включённое состояние реле.
1 — электромагнит (обмотка с ферромагнитным сердечником);
2 — подвижный якорь;
3 — контактная система (переключатель).

где, - часть намагничивающей силы, создаваемой обмоткой реле, идущая на проведение магнитного потока через рабочий воздушный зазор.

Значение , где ; и - магнитные сопротивления рабочего воздушного зазора и магнитопровода,

- производная изменения магнитной проводимости рабочего воздушного зазора по ходу якоря или сердечника.

Воспринимающий орган электромагнитных реле переменного тока обычно имеют магнитную систему, состоящую из магнитопровода I - , П - или Ш -образной формы, собранного из листовой электротехнической стали, обладающие малыми потерями на гистерезис и вихревые токи. Так как при переменном токе и

, то тяговые усилия (или тяговый момент) будут меняться по закону

что приводит к непостоянству работы контактов и к механическому износу подвижной системы реле. Для устранения этого разбивают магнитный поток в рабочем воздушном зазоре на два потока, сдвинутые по фазе на угол φ. Это достигается охватом 1/2 или 2/3 полюсного наконечника короткозамкнутым витком. При этом тяговые усилия равны

Быстродействующие электромагнитные реле выполняются с небольшими весами и моментом инерции подвижных частей, с магнитной системой, изготовленной из листовой стали или стали, содержащей около 4 % кремния.

В электромагнитных реле замедленного действия подвижные части выполняются с большим моментом инерции с надетым на сердечник короткозамкнутым витком или втулкой из меди или алюминия. Часто для замедления срабатывания и отпускания применяют схемы замедления с помощью которых достигается удлинение переходных процессов, происходящих в его обмотках. Как время срабатывания так и время отпускания реле складывается из времени трогания, то есть времени нарастания (или спадания) тока в обмотке до момента трогания якоря, и времени движения якоря до замыкания (или размыкания) контактов. Схемы замедления воздействуют на продолжительность времени трогания.

Основные схемы замедления
Схема замедления Порядок достигаемых замедлений по

отношению к нормальным при

срабатывании отпускании
2 2
1,5 2-8
1,5 3-8
2-3 1-2
5-20 -
10 10

Основные части электромагнитного реле: электромагнит , якорь и переключатель . Электромагнит представляет собой электрический провод , намотанный на катушку с из магнитомягкого материала . Якорь — обычно пластина из магнитного материала, через толкатели воздействующая на контакты .

Ряд номинальных напряжений, применяемых для питания катушек реле, согласно DIN IEC 38
Переменное напряжение
(вольт)
Постоянное напряжение
(вольт)
Предпочтительное
значение
Допустимое
значение
Предпочтительное
значение
Допустимое
значение
- 2 - 2,4
- - - 3
- - - 4
- - - 4,5
- 5 - 5
6 - 6 -
- - - 7,5
- - - 9
12 - 12 -
- 15 - 15
24 - 24 -
- - - 30
- 36 36 -
- - - 40
- 42 - -
48 - 48 -
- 60 60 -
- - 72 -
- - - 80
- - 96 -
- 100 - -
110 - 110 -
- - - 125
220 - - -
- - - 250
380 - - -
440 - 440 -
- - - 600

В исходном положении якорь удерживается пружиной. При подаче управляющего сигнала электромагнит притягивает якорь, преодолевая её усилие, и замыкает и/или размыкает контакты в зависимости от конструкции реле. После отключения управляющего напряжения пружина возвращает якорь в исходное положение. В некоторые модели могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех или полупроводниковый диод, служащий для блокировки перенапряжений на обмотке реле при его обесточивании вследствие электромагнитной индукции.

Управляемая цепь электрически никак не связана с управляющей, то есть они гальванически изолированы друг от друга (электротехниками нередко используется калька с английского термин « сухой контакт » вместо более русскоязычного словосочетания «изолированный контакт»). Более того, в управляемой цепи величина тока может быть намного больше, чем в управляющей. Источником управляющего сигнала могут быть слаботочные электрические схемы (например, дистанционного управления), различные датчики (света, давления, температуры и т. п.), и другие приборы которые выдают малые величины тока и/или напряжения. Таким образом, реле, по сути, выполняют роль дискретного усилителя тока, напряжения и мощности в электрической цепи. Это свойство реле, кстати, имело широкое применение в самых первых дискретных (цифровых) вычислительных машинах . Впоследствии реле в цифровой вычислительной технике были вытеснены сначала лампами , потом транзисторами и микросхемами — работающими в ключевом (переключательном) режиме. В настоящее время производятся попытки возродить релейные вычислительные машины с использованием нанотехнологий .

Как правило, электромеханическое реле имеет ярко выраженную петлю гистерезиса функции входной ток — состояние контактов (то есть работают как Триггер Шмитта ). Соответственно, для некоторых реле указывают два порога этой петли гистерезиса — ток срабатывания и ток отпускания. Ток срабатывания указывает при каком токе реле переходит из состояния выключено в состояние включено. Ток отпускания (иногда называют током удержания) указывает при каком токе реле переходит из состояния включено в состояние выключено.

В момент переключения реле в активный режим требуется значительно больший ток, чем для удерживания, поскольку вблизи к магниту поле значительно сильнее, чем на удалении.

В наши дни в электронике и электротехнике реле используют в основном для управления большими токами. В цепях с небольшими токами для управления чаще всего применяются транзисторы или тиристоры .

При работе со сверхбольшими токами (десятки-сотни ампер ; например, при очистке металла методом электролиза ) для исключения возможности пробоя контакты управляемой цепи исполняются с большой контактной площадью и погружаются в масло (так называемая «масляная ячейка»).

Реле до сих пор очень широко применяются в бытовой электротехнике, в особенности для автоматического включения и выключения электродвигателей (пускозащитные реле), а также в электрических схемах автомобилей. Например, пускозащитное реле обязательно имеется в бытовом холодильнике , а также в стиральных машинах. В этих устройствах реле намного надёжнее электроники, так как оно устойчиво к броску тока при запуске электродвигателя и особенно к сильному броску напряжения при его отключении.

Литература

  • Сотсков Б.С. Основы расчета и проектирования электромеханических элементов автоматических и телемеханических устройств автомата. — Москва, 1959.
  • Ступель Ф.А. Электромеханические реле. — Харьков, 1956.
  • Пик Р., Уэйгар Г.,. Расчет коммутационных реле / пер. с англ.. — 1961.
  • Витенберг М.И. Расчет электромагнитных реле для аппаратуры автоматики и связи. — 1956.
Источник —

Same as Электромагнитное реле