Двухфазная электрическая сеть
- 1 year ago
- 0
- 0
Электрическая сеть — совокупность электроустановок , предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.
Генерация — процесс производства электроэнергии из других источников энергии, чаще всего на электростанциях . Обычно генерация происходит с помощью электромеханических генераторов , приводимых в движение тепловыми двигателями либо кинетической энергией воды или ветра. Другие источники энергии включают в себя фотовольтаику и геотермальные источники .
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока ( провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки ( опоры , эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты ( грозозащитные тросы , разрядники , заземление ).
Как правило, генераторы источника и потребители работают с низким номинальным напряжением . Потери энергии в линиях прямо пропорциональны квадрату силы тока, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи силовых трансформаторов .
Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи , которые соединяют подстанции . Линии могут быть одинарными и двойными ( двухцепными ), иметь ответвления ( отпайки ). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема , представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации сети.
Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока . Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи силовых трансформаторов , что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока . В России и европейских странах промышленная частота тока равна 50 герц , в США , Японии и ряде других стран — 60 герц.
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется .
При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности S = I×U , для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения :
Уровень напряжения (иногда « диапазон напряжения» или «тарифный уровень напряжения» , или «тарифный уровень (диапазон, класс) напряжения» , или « класс напряжения» ) – это понятие, также используемое:
По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».