Interested Article - Ромбоусечённый икосододекаэдр
- 2020-06-08
- 1
Ромбоусечённый икосододека́эдр или усечённый икосододека́эдр — полуправильный многогранник (архимедово тело) с 62 гранями, составленный из 30 квадратов , 20 правильных шестиугольников и 12 правильных десятиугольников .
В каждой из его 120 одинаковых вершин сходятся одна квадратная грань, одна шестиугольная и одна десятиугольная. Телесный угол при вершине равен в точности
Имеет 180 рёбер равной длины. При 60 рёбрах (между квадратной и шестиугольной гранями) двугранные углы равны при 60 рёбрах (между квадратной и десятиугольной гранями) при 60 рёбрах (между шестиугольной и десятиугольной гранями)
Название «усечённый икосододекаэдр», которое первоначально дал этому многограннику Кеплер , способно ввести в заблуждение. Дело в том, что в результате операции усечения , «срезав» с икосододекаэдра 30 четырёхугольных пирамид , можно получить лишь несколько иной многогранник, четырёхугольные грани которого — золотые прямоугольники , а не квадраты. Полученный многогранник полуправильным не является; впрочем, он изоморфен настоящему ромбоусечённому икосододекаэдру и может быть превращён в таковой при помощи небольшой деформации.
В координатах
Ромбоусечённый икосододекаэдр можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными циклическими перестановками наборов чисел
где — отношение золотого сечения .
Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер .
Метрические характеристики
Если ромбоусечённый икосододекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
Вписать в ромбоусечённый икосододекаэдр сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри ромбоусечённого икосододекаэдра с ребром (она будет касаться только всех десятиугольных граней в их центрах), равен
Расстояния от центра многогранника до шестиугольных и квадратных граней превосходят и равны соответственно
Примечательные свойства
Среди всех платоновых тел , архимедовых тел и тел Джонсона с заданной длиной ребра ромбоусечённый икосододекаэдр имеет наибольший объём, наибольшую площадь поверхности и наибольший диаметр.
Среди всех платоновых тел, архимедовых тел и тел Джонсона ромбоусечённый икосододекаэдр имеет наибольшее число вершин и наибольшее число рёбер (но не наибольшее число граней — здесь первое место занимает курносый додекаэдр ).
Примечания
- , с. 20, 40.
- , с. 437, 434.
- , с. 184.
Ссылки
- Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Литература
- М. Веннинджер . Модели многогранников. — Мир , 1974.
- Многоугольники и многогранники // Энциклопедия элементарной математики. Книга четвёртая. Геометрия / Под ред. П. С. Александрова , А. И. Маркушевича , А. Я. Хинчина . — М. : Государственное издательство физико-математической литературы , 1963. — С. 382—447.
- Л. А. Люстерник . Выпуклые фигуры и многогранники. — М. : Государственное издательство технико-теоретической литературы , 1956.
- 2020-06-08
- 1