Interested Article - Электронная литография

Электро́нно-лучева́я литогра́фия — метод нано литография с использованием электронного пучка .

Принцип метода

Электронный пучок, остросфокусированный с помощью магнитных линз на поверхность слоя полимера ( резиста ), чувствительного к электронному облучению, прорисовывает на нем скрытое изображение, которое обнаруживается после обработки резиста в проявителе. Облучение потоком электронов резиста меняет степень растворимости полимера в растворителе (проявителе). Экспонированные участки резиста с записанным на них изображением, смываются с помощью проявителя. Через полученные окна в плёнке резиста производится вакуумное напыление подходящего материала, например, нитрида титана или металлов, или ионное травление. Позднее в технологическом процессе неэкспонированный резист также смывают другим растворителем.

Перемещение электронного пучка по поверхности осуществляется изменением токов в отклоняющих магнитных системах, управление токами производится компьютером. В некоторых установках также меняется форма и размеры пятна электронного пучка.

После многоступенчатого технологического процесса получается фотошаблон-маска для использования в фотолитографии и других нанотехнологических процессах, например, в технологии реактивного ионного травления .

Электронная литография позволяет на нынешнем уровне развития технологии в рекордных экспериментальных установках получать структуры с разрешением менее 1 нм , недостижимое для жесткого ультрафиолетового излучения, благодаря более короткой де-Бройлевской длине волны электронов по сравнению со светом (см. Волновая механика ).

Электронная литография является основным методом получения масок для использования в последующей фотолитографии при производстве монолитных микросхем (в том числе масок для проекционной фотолитографии при массовом производстве сверхбольших микросхем ).

Альтернативным способом создания масок является лазерная технология , однако эта технология имеет меньшее разрешение .

Также электронная литография, имеющая невысокую производительность, используется при производстве единичных экземпляров электронных компонентов с нанометровым разрешением в промышленности и в научных исследованиях.

Разрешение в электронной литографии

На разрешение деталей рисунка при записи влияют как размер электронного пучка, так и процессы взаимодействия электронного пучка с резистом .

Размер электронного пучка

Влияние хроматической, сферической аберраций и дифракции на размер электронного пучка

На диаметр электронного пучка влияют несколько факторов: размер источника электронов и коэффициент масштабирования электронной фокусирующей системы . Эти параметры связаны между собой формулой:

.

Длина волны электрона зависит от ускоряющего потенциала и равна нм. Для ускоряющего напряжения 10 кВ длина волны электрона составляет 12,2 пм, и, соответственно, разрешение системы, ограниченное дифракцией, равно:

,
где — половина угла фокусировки пучка.

В реальных системах магнитные линзы имеют сферическую и хроматическую аберрации. Сферическая аберрация возникает вследствие различия фокусного расстояния для электронов движущих по оси и на периферии пучка. Разброс скоростей электронов в пучке приводит к хроматической аберрации — электроны с разной начальной скоростью фокусируются на разных расстояниях.

Для уменьшения сферической аберрации применяют апертурное ограничение пучка — диафрагмы, обрезающие периферийные электроны. Но при диафрагмировании пучка уменьшается его ток.

Таким образом, разрешение, определяемое свойствами электронного пучка, имеет вид:

.

На рисунке показана зависимость размера пучка от угла фокусировки с учётом всех видов искажения размеров пучка.

Ухудшение разрешения из-за нелинейных процессов при взаимодействии электронного пучка с резистом

Схема взаимодействия первичного электрона пучка с подложкой (слоем резиста). Вторичные выбитые электроны паразитно экспонируют близлежащие участки резиста.

Конечное разрешение электронной литографии определяется не только диаметром сфокусированного пучка, а ещё характером его взаимодействия со слоем резиста. Соударение электронов первичного, высокоэнергетического пучка электронов (красная линия) с атомами материала резиста порождает в нём затухающую лавину вторичных выбитых электронов (синии линии), вторичные электроны паразитно «засвечивают» резист. В результате экспонированное пятно в плёнке резиста оказывается в несколько раз больше по размеру относительно диаметра электронного пучка.

Для снижения энергии лавины вторичных электронов, и, соответственно, уменьшения размера экспозиционного пятна, необходимо уменьшать энергию электронов пучка, то есть — снижать ускоряющее напряжение электронной пушки . Но при снижении ускоряющего напряжения ухудшается фокусировка пучка. Поэтому практически выбирают компромиссную величину ускоряющего напряжения — для обеспечения наилучшего разрешения при применённой толщине слоя резиста и его свойствах.

Принципы записи рисунка на образце

В настоящее время (2015 г.) запись скрытого изображения в плёнке резиста на поверхности образца может осуществляться тремя возможными методами:

  • растровым способом;
  • векторным способом;
  • записью электронным пучком с изменяющимся размером и формой сфокусированного пятна.
Растровая запись

Этот вид записи аналогичен считыванию (записи) изображения на экране телевизора, где электронный луч последовательно (построчно) обегает каждую точку экрана. В местах где необходимо, луч экспонирует резист, остальных точках пучок электронов блокируется запиранием электронной пушки, хотя сканирование (изменение тока в системе отклонения) продолжается.

Векторная запись

Электронный луч подаётся только на те места, где необходимо экспонирование, и не подаётся в места, не подлежащие экспозиции. Поэтому весь процесс экспозиции осуществляется значительно быстрее, чем при растровом способе записи.

Запись электронным пучком с изменяющимся размером и формой электронного пучка

В этом случае запись происходит «большим мазком», — по терминологии художников. Так как любой рисунок можно нарисовать с помощью прямоугольников, то нет необходимости растеризовать рисунок на элементарные пикселы , достаточно изменять форму и размер сфокусированного пучка, от маленького прямоугольника до большого. Запись при этом происходит ещё быстрее, чем в векторном способе.

Системы для электронной литографии

Системы электронной литографии для коммерческих применений имеют стоимость порядка $4 млн и выше. Для научных исследований обычно используют электронный микроскоп , переделанный в систему электронной литографии при помощи относительно дешевых дополнительных устройств (общая стоимость такой установки <100 тыс. долларов США). Эти модифицированные системы позволяли прорисовывать линии с шириной около 20 нм уже с 1990-х годах. Между тем, современное специализированное оборудование позволят получать разрешение лучше 10 нм.

Производители

Электронная литография применяется для создания масок для фотолитографии ( фотошаблонов ), при этом традиционно используются системы с одним электронным пучком. Подобные системы производили компании: Applied Materials, Leica, Hitachi, Toshiba, JEOL , .

Несколько производителей установок электронной литографии с середины 2010-х предлагают многопучковые системы создания фотошаблонов для производства монолитных микросхем , при этом производители также предлагают их в качестве установок для непосредственной записи рисунка на больших подложках (безмасочная литография), так как они имеют большую производительность по сравнению с однопучковыми установками, и поэтому могут конкурировать с традиционным фотолитографическим методом при выпуске малых партий микросхем :

  • Mapper Lithography (Нидерланды);
  • AG (Vienna, Austria);
  • Corp. (Milpitas, California) — технология Reflective Electron Beam Lithography (REBL);
  • Elionix, Япония.

В таблице в качестве примера приведены характеристики установки фирмы Elionix ELS-F125 (типичные параметры установки с одним пучком):

Источник электронов — катод электронной пушки ZrO 2 / W — нагревательный элемент
Диаметр электронного пучка на ширине полуинтесивности 1,7 нм при 125 кВ
Минимальная ширина линии около 5 нм при 125 кВ
Ток электронного пучка 5 пА...100 нА
Ускоряющее напряжение 125 кВ, 100 кВ, 50 кВ, 25 кВ
Размер записываемой площадки 3000 мкм x 3000 мкм (максимально), 100 мкм x 100 мкм (минимально)
Точность позиционирования пучка 0,01 нм
Максимальный размер обрабатываемой пластины 20 см (200-мм пластины и 200-мм маски)

См. также

Литература

  • Аброян И. А., Андронов А. Н., Титов А. И. Физические основы электронной и ионной технологии. — М. : Высшая школа, 1984. — 320 с.
  • Электронно-лучевая технология в изготовлении микроэлектронных приборов / Брюэр Дж. Р.. — М. : Радио и связь, 1984. — 336 с.
  • Валиев К. А. Микроэлектроника: достижения и пути развития / Валиев К. А.. — М. : Наука, 1986. — 141 с.
  • Валиев, К. А.; Раков, А. В. Физические основы субмикронной литографии в микроэлектронике. — М. : Наука, 1984. — 352 с.
  • Попов В. Ф., Горин Ю. Н. Процессы и установки электронно-ионной технологии. — М. : Высш. шк., 1988. — 255 с. — ISBN 5-06-001480-0 .
  • Виноградов М. И., Маишев Ю. П. Вакуумные процессы и оборудование ионно- и электронно-лучевой технологии. — М. : Машиностроение, 1989. — 56 с. — ISBN 5-217-00726-5 .

Примечания

  1. McCord, M. A.; M. J. Rooks. 2 // (англ.) . — 2000. 19 августа 2019 года.
  2. Principles of Lithography, Third Edition, SPIE Press, 2011 ISBN 978-0-8194-8324-9 7.4 Electron-beam lithography and mask writers «For two decades, the MEBES systems were the primary beam writers used to make photomasks»
  3. Syed Rizvi , (недоступная ссылка) , Taylor & Francis, 2005, ISBN 978-0-8247-5374-0 . Sergey Babin 3. Mask Writers: An Overview, 3.1 Introduction. «For decades, the unique features of EBL systems — easily programmable computer control, high accuracy, and relatively high throughput — have positioned these systems as the main tools to fabricate critical masks.»
  4. Hwaiyu Geng Semiconductor manufacturing handbook. ISBN 978-0-07-146965-4 , McGraw-Hill Handbooks 2005, . Раздел ( Charles Howard , DuPont) «The other pattern generation alternative is a laser-based system»
  5. Peter Buck (DuPont Photomasks), (недоступная ссылка) , Microlithography World volume 11 issue 3, PennWell Publishing, Aug 2002 (p 22): «Optical mask lithography systems are restricted in resolution, just like wafer steppers, to roughly 3/4 of the exposure wavelength. Accordingly, they do not exhibit the <100nm resolution possible for VSB /electron lithography/ systems.»
  6. SPIE Handbook of Microlithography, Micromachining and Microfabrication Volume 1: Microlithography, от 18 августа 2019 на Wayback Machine
  7. Syed Rizvi , (недоступная ссылка) , Taylor & Francis, 2005, ISBN 978-0-8247-5374-0 . 3.3 Vector Scan Systems, pages 60 −61
  8. от 22 декабря 2015 на Wayback Machine / DuPont Photomasks, 2001
  9. от 3 июля 2017 на Wayback Machine / EETimes, 2001-07-27
  10. от 22 декабря 2015 на Wayback Machine Chapter 2, E Beam Lithography
  11. от 18 мая 2021 на Wayback Machine «In 2015, photomask vendors could begin to make a gradual transition from single-beam e-beam tools to a new class of multi-beam mask writers.»
  12. Peter Clarke (2012-02-17). (англ.) . EETimes. из оригинала 10 января 2014 . Дата обращения: 10 января 2014 . «There are at least three potential suppliers of the maskless e-beam technology: IMS Nanofabrication AG (Vienna, Austria), KLA-Tencor Corp. (Milpitas, Calif.) with its Reflective Electron Beam Lithography (REBL) system and Mapper Lithography.»
  13. . Дата обращения: 20 декабря 2015. Архивировано из 6 февраля 2016 года.
Источник —

Same as Электронная литография