Interested Article - Формулы Виета
- 2021-08-25
- 1
Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни .
Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.
Эти тождества неявно присутствуют в работах Франсуа Виета . Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде. :138—139
Формулировка
Если — корни многочлена
(каждый корень взят соответствующее его кратности число раз, при этом общее количество корней с учётом кратных равно степени многочлена, иначе формулы неприменимы), то коэффициенты выражаются в виде симметрических многочленов от корней , а именно:
Иначе говоря, равно сумме всех возможных произведений из корней.
Для применимости формул Виета обязательно наличие полного разложения многочлена, то есть количество корней с учётом кратности должно равняться степени многочлена. Это имеет место, в частности, всегда над полем комплексных чисел .
Следствие : из последней формулы Виета следует, что если все корни многочлена целочисленные, а общее их количество с учётом кратности равно степени многочлена, то они являются делителями его свободного члена, который также целочисленен.
Если старший коэффициент многочлена не равен единице:
то для применения формулы Виета необходимо предварительно разделить все коэффициенты на (это не влияет на значения корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему:
Подобная методика применима не только в случае, когда все корни целые. Например, при умножении любого многочлена только с целыми корнями на многочлен получается многочлен с подобным свойством, позволяющим выделить целые корни этим же методом, понизив в результате степень и дойдя до полного разложения. Также алгоритм имеет полезное расширение для поиска рациональных корней: для этого в качестве тестируемых кандидатов на корни рассматриваются дроби, в которых числитель является делителем свободного члена, а знаменатель — делителем старшего коэффициента.
Доказательство
Доказательство осуществляется рассмотрением равенства, полученного разложением многочлена по корням, учитывая, что
Приравнивая коэффициенты при одинаковых степенях , получаем формулы Виета.
Примеры
Квадратное уравнение
Если и — корни квадратного уравнения , то
В частном случае, если (приведённая форма ), то
Кубическое уравнение
Если — корни кубического уравнения , то
Вариации и обобщения
Из приведённого выше доказательства видно, что формулы Виета получаются чисто алгебраически из свойств сложения и умножения. Поэтому они применимы к многочленам с коэффициентами из произвольной области целостности , если старший коэффициент многочлена равен единице а корни располагаются в алгебраическом замыкании поля частных для
Если коэффициенты многочлена берутся из произвольного коммутативного кольца , не являющегося областью целостности (то есть имеющего делители нуля ), то формулы Виета, вообще говоря, не выполняются. Например, рассмотрим в качестве кольцо вычетов по модулю и многочлен Он имеет в этом кольце не два, а четыре корня: Поэтому использованное в доказательстве разложение на линейные множители, число которых равно числу корней, не имеет места, и формулы Виета, как легко проверить, неверны.
См. также
Примечания
- Florian Cajori. A History of Mathematics. — 5th edition. — 1991.
- , с. 26—28.
Литература
- Винберг Э. Б. Алгебра многочленов. Учебное пособие для студентов-заочников III—IV курсов физико-математических факультетов педагогических институтов. — М. : Просвещение, 1980.
- Weisstein, Eric W. / From MathWorld --A Wolfram Web Resource (англ.)
- Hazewinkel, Michiel, ed. (2001), (недоступная ссылка) , Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 (англ.)
- Funkhouser, H. Gray (1930), «A short account of the history of symmetric functions of roots of equations», American Mathematical Monthly (Mathematical Association of America) 37 (7): 357—365, , JSTOR 2299273 (англ.)
- 2021-08-25
- 1