Interested Article - Теорема Мёнье

Теоре́ма (или фо́рмула ) Мёнье́ — даёт выражение для кривизны кривой , лежащей на поверхности .

Формулировки

Существует несколько эквивалентных формулировок:

  • Пусть есть кривизна кривой в точке , лежащей на поверхности. Пусть эта поверхность имеет в точке в направлении, касательном к , нормальную кривизну , и угол между соприкасающейся плоскостью кривой в точке Р и нормалью к поверхности в равен . Тогда
  • В любой точке кривой скалярное произведение главной нормали кривой на единичную нормаль поверхности зависит только от направления кривой в этой точке и равно отношению значений первой и второй фундаментальных форм на векторе скорости кривой.

Замечания

  • В частности, кривизна любого сечения поверхности не меньше кривизны нормального сечения с той же касательной .

История

Теорему анонсировал Жан Батист Мёнье в 1776 году, опубликовал в 1785 году .

Литература

  • Норден А. П. Краткий курс дифференциальной геометрии. М.: Физматгиз, 1958, глава VII, § 89.

Ссылки

  • Тимофеева Н. В. .
  • (англ.) .

Примечания

  1. Мёнье теорема // . — М. : Советская энциклопедия , 1982. — Т. 3. 16 октября 2013 года.
  2. Написание фамилии дано по справочнику: Математический энциклопедический словарь / Гл. ред. Ю.В.Прохоров . — М. : Советская энциклопедия, 1988. — С. . — 847 с.
  3. Meusnier J. от 25 августа 2016 на Wayback Machine // Mémoires de Mathématique et de Physique présentés à l'Académie Royale des Sciences, par Divers Savants, & lûs dans ses Assemblées (Paris), 1785, v. 10, p. 477–510. Краткий англоязычный обзор: Truesdell C. от 23 августа 2016 на Wayback Machine // Meccanica, 1996, v. 31, issue 5, p. 607–610.
Источник —

Same as Теорема Мёнье