Interested Article - Канонические координаты

Канонические координаты — независимые параметры в гамильтоновом формализме классической механики . Обозначают их обычно как и .

Канонические координаты удовлетворяют фундаментальным соотношениям, выраженным через скобки Пуассона :

Канонические координаты можно получить из обобщённых координат лагранжевой механики с помощью преобразований Лежандра или из другого множества канонических координат с помощью канонических преобразований . Если гамильтониан определён на кокасательном расслоении, то обобщённые координаты связаны с каноническими координатами с помощью уравнений Гамильтона — Якоби .

Хотя может существовать много вариантов выбора канонических координат физической системы, обычно выбираются параметры, которые удобны для описания конфигурации системы и которые упрощают решение уравнений Гамильтона.

Близкие понятия используются также в квантовой механике , см. и канонические коммутационные соотношения .

Обобщение

Поскольку гамильтонова механика по математической структуре представляет собой симплектическую геометрию , то канонические преобразования являются частным случаем контактных преобразований .

Канонические координаты определяются как специальное множество координат на кокасательном расслоении многообразия . Они обычно записываются как множество или , где буквой x или q обозначаются координаты на многообразии, а буквой p обозначается сопряжённый момент , который является ковариантным вектором в точке q многообразия.

Обычное определение канонических координат — это система координат на кокасательном расслоении, в которых записывается в виде

с точностью до прибавления полного дифференциала. Изменение координат, сохраняющее этот вид, является каноническим преобразованием . Это является специальным случаем * , который, по существу, является изменением координат на симплектическом многообразии .

Формальное исследование

Если задано действительное многообразие Q , то векторное поле X на Q (или, эквивалентно, сечение касательного расслоения TQ ) можно рассматривать как функцию, действующую на * , ввиду двойственности касательного и кокасательного пространств. То есть функция

такая, что

сохраняет все кокасательные вектора p в . Здесь является вектором в , касательном пространстве многообразия Q в точке q . Функция называется функцией момента , соответствующей X .

В локальных координатах векторное поле X в точке q может быть записано как

,

где является системой координат в TQ. Сопряжённый момент тогда выражается как

,

где определяются как функции момента, соответствующие векторам :

вместе с образуют координатную систему на кокасательном расслоении . Эти координаты называются каноническими координатами .

Литература

  • Herbert Goldstein, Charles P. Poole, Jr., John L. Safko. Classical Mechanics. — 3rd. — San Francisco: Addison Wesley, 2002. — С. 347–349. — ISBN 0-201-65702-3 .
  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М. : Едиториал УРСС, 2003. — 416 с. — 1500 экз. ISBN 5-354-00341-5 .
Источник —

Same as Канонические координаты