Interested Article - Шестиугольник Лемуана

Показан шестиугольник Лемуана , вписанный в первую окружность Лемуана , как связный самопересекающийся шестиугольник

Шестиугольник Лемуана представляет собой шестиугольник, около которого можно описать окружность. Его вершинами являются шесть точек пересечениями сторон треугольника с тремя линиями, которые параллельны сторонам и которые проходят через его точку Лемуана . В любом треугольнике шестиугольник Лемуана находится внутри треугольника с тремя парами вершин, лежащих попарно на каждой стороне треугольника.

В геометрии (первый) шестиугольник Лемуана представляет собой шестиугольник, около которого можно описать окружность. Его вершинами являются шесть точек пересечениями сторон треугольника с тремя линиями, которые параллельны сторонам и которые проходят через его точку Лемуана . В любом треугольнике шестиугольник Лемуана находится внутри треугольника с тремя парами вершин, лежащих попарно на каждой стороне треугольника. Есть два определения шестиугольника, которые различаются в зависимости от порядка, в котором соединены вершины.

Площадь и периметр

Шестиугольник Лемуана можно сделать определенные двумя способами, сначала как простой шестиугольник с вершинами в точках пересечения, как определено ранее. Второй способ представляет собой самопересекающийся шестиугольник с линиями, проходящими через точку Лемуана в виде трех ребер, а три других ребра соединяют пары смежных вершин. Для простого самонепересекающегося шестиугольника, построенного внутри треугольника, с длинами сторон и площадью периметр задается в виде:

,

а площадь задается в виде:

Для простого самопересекающегося шестиугольника, построенного внутри треугольника, периметр задается в виде:

,

а площадь задается в виде:

.

Описанная окружность шестиугольника Лемуана

В геометрии пять точек определяют коническое сечение, так что произвольные наборы из шести точек, в общем случае вообще не лежат на коническоом сечении, не говоря уже о круге. Тем не менее, шестиугольника Лемуана (либо с порядком подключения) является вписанным в окружность шестиугольником, а это означает, что все его вершины лежат на одной окружности. Окружность шестиугольника Lemoine известна как "первая окружность Лемуана" .

Второй шестиугольник Лемуана

Второй шестиугольник Лемуана представляет собой шестиугольник, около которого можно описать окружность. Его вершинами являются шесть точек пересечениями сторон треугольника с тремя линиями, которые антипараллельны сторонам и которые проходят через его точку Лемуана.

Примечания

  1. Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М. : Учпедгиз, 1962. — С. 109-110, п. 95-96, теоремы, следствие.
  2. Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М. : Учпедгиз, 1962. — С. 111, п. 98, теорема.

Ссылки

  • (1888), "Lemoine's, Tucker's, and Taylor's Circles", (5th ed.), Dublin: Hodges, Figgis, & Co., pp. 179ff .
  • (1874), "Sur quelques propriétés d'un point remarquable d'un triangle", (фр.) , pp. 90—95 .
  • Mackay, J. S. (1895), "Symmedians of a triangle and their concomitant circles", Proceedings of the Edinburgh Mathematical Society , 14 : 37—103, doi : .

Внешние ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Шестиугольник Лемуана