Длина
- 1 year ago
- 0
- 0
Персистентная длина — это количественная характеристика гибкости полимера .
Понятие персистентной длины возникает при рассмотрении модели с поворотно-изомерным механизмом гибкости , а именно при учёте корреляции направлений отдельных участков цепи, разделённых некоторым расстоянием. В данной модели рассматривается цепь, представляющая собой последовательность N шарнирно соединенных жестких сегментов длины l каждый (если не учитывать взаимодействие между непосредственно не связанными звеньями, то мы будем иметь дело с ).
Для описания данной цепи вводится вектор R , соединяющий концы нашей цепи. Наиболее удобной величиной является среднеквадратичное (усредненное по всем конформациям ) расстояние между концами — это простейшая характеристика среднего размера макромолекулы . Вектор R представляет собой сумму векторов, соединяющих между собой точки-бусинки. Вопрос о разбиении полимерной цепи на подобные участки, когда систему можно было бы считать идеальной, и приводит к понятию персистентной длины и связанному с ним критерию идеальности.
Для изотропной в поперечной плоскости цепи (то есть для непрерывно гибкой цепи) верно:
где: θ — среднее значение угла между участками цепи, разделенными длиной s , а l — персистентная длина
Возможны два предельных случая при обсуждении данной формулы:
Следовательно, , что в свою очередь означает, что на длинах меньше персистентной гибкость цепи не проявляется и такой участок ведет себя как гибкий стержень.
Следовательно, , что в свою очередь означает, что на длинах больше персистентной участки ведут себя как полностью независимые.
Таким образом, персистентную длину можно рассматривать как характеристику тех масштабов, больше которых теряется память о направлении цепи, или же её можно грубо рассматривать как максимальный участок цепи, остающийся прямым. Таким образом, любую длинную макромолекулу можно представить как свободно-сочлененную цепь из жестких сегментов длины порядка . Когда учтены механизмы жёсткости, какими бы они ни были (так, для цепи с фиксированными валентными углами и свободным внутренним вращением, персистентная длина определяется величиной валентных углов внутреннего вращения — чем меньше валентный угол , тем больше персистентная длина ввиду почти одинакового направления соседних звеньев), для нашей персистентной цепочки справедливо:
где L — контурная длина полимерной цепи
Однако, вышеприведённое соотношение — приближенное, и множитель пропорциональности в нём зависит от конкретных систем. Ввиду этого было введено понятие (статистического сегмента). Данную характеристику легче измерить в эксперименте.
Пояснить различие между статистическим сегментом и персистентной длиной можно на примере персистентной цепи с изотропной гибкостью: пусть конформация цепи длины L задается вектором r(s) , где s — расстояние вдоль контура от начала цепи. Вводя единичный вектор, характеризующий направление конформации в каждой точке r(s) , можем записать R — вектор связывающий начало и конец цепи, как:
Вычисляя теперь с использованием формулы (1):
При обсуждении данной формулы возможны два предельных случая:
Имеем: Это равенство говорит, что контурная длина цепи равна длине вектора, соединяющего концы цепи, а значит цепь изгибается мало.
Имеем: Сравнивая же это равенство с соотношением (2), видим, что сегмент Куна для персистентной модели вдвое превышает персистентную длину.
Таким образом для персистентной цепи с изотропной гибкостью:
Существуют однако и другие механизмы гибкости. Так, для модели со цепи со свободным внутренним вращением и фиксированным валентным углом, а также для такой же модели, но с уже заданным потенциалом внутреннего вращения можно показать, что отношение ≈2