Interested Article - Квантовая струна

Теория струн
Теория суперструн
См. также: Портал:Физика

Ква́нтовая струна́ — в теории струн бесконечно тонкие одномерные объекты длиной в 10 −35 м , колебания которых воспроизводят всё многообразие элементарных частиц. Характер колебаний струны задаёт свойства материи, такие как электрический заряд и масса .

Определения

Квантовая струна может быть определена несколькими равнозначными способами:

  1. Координатное определение: пространственная кривая общего положения, с каждой точкой которой связан квантовый гармонический осциллятор . С точки зрения динамики при движении заметает двумерную поверхность общего вида.
  2. Алгебро-геометрическое определение: алгебраическая кривая общего вида, с допустимыми на ней математическими структурами.
  3. Теоретико-полевое определение: мультилокальный квантовый функционал , являющийся функцией каждой точки струны, который в гильбертовом пространстве струнных возбуждений является суперпозицией всех возможных конфигураций струн.
  4. Геометрически-полевое определение: непараметризованная точка общего положения в пространстве всех физических конфигураций струн, то есть не зависящих от системы координат ( пространство петель ).

Типы струн

Существуют струны, у которых есть концы, их называют открытыми, и у которых концов нет, их называют замкнутыми.
В случае, если Φ зависит только от бозонных переменных , то струна является бозонной . Если Φ зависит только от фермионных переменных , то фермионной . Если и от бозонных, и от фермионных, при условии суперсимметрии , то суперсимметричной или суперструной . Если требование суперсимметрии частично невыполнимо, то гетеротической .
На языке определения 1 это, соответственно, бозонные и фермионные осцилляторы . Струны могут быть как ориентированными (стрелка внутри), так и неориентированными.

Главной особенностью квантовых струн является то, что они «живут» в критической или подкритической размерности пространства, в отличие от классических струн. Бозонная струна − в D=26, а фермионная и суперструна − в D=10, для известных моделей гетеротических струн критическая размерность также равна 10. Это является следствием устранения нефизических состояний, так называемых дýхов из спектра струны во время и известно как « ».

Взаимодействия

Квантовые струны довольно сложным образом взаимодействуют друг с другом, так как являются нелокальными, более точно мультилокальными объектами. Однако с точки зрения изменения их формы ( топологии ) допустимы лишь 5 элементарных локальных актов, согласующихся с физическими принципами :

  1. Открытая струна (с концами) может разорваться в точке на 2 открытые струны.
  2. Замкнутая струна (без концов) может сойтись во внутренней точке касания и расщепиться на 2 замкнутые струны.
  3. Замкнутая струна может разорваться в точке и стать открытой.
  4. В точке касания 2 открытые струны могут обменяться сегментами.
  5. Открытая струна может потерять сегмент в виде замкнутой струны, через внутреннюю точку касания.

Все точки взаимодействия являются «тройными» точками, которые при малом шевелении дают все 5 вышеописанных перестроек. Обратные процессы добавляют ещё 5 элементарных локальных актов взаимодействия.

Для суперструн из-за разных условий на бозонные и фермионные переменные приходится добавлять в «тройную» точку дополнительные поля, чтобы не нарушить суперсимметрию. (см. литературу в примечании и список литературы в статье Теория струн )

Многие исследователи полагают, что на основе моделей струн и суперструн удастся построить всю низкоэнергетическую физику нашего мира.

Примечание

  • И.Арефьева, И. Волович , ТиМ физика, т. 67, 2, 1986
  • Kaku M. Introduction to the Field Theory of Strings. WS, Singapore, 1985

См. также

Примечания

  1. . Дата обращения: 9 января 2010. 29 декабря 2009 года.

Литература

Источник —

Same as Квантовая струна