Interested Article - Алгебра Хопфа
- 2021-06-21
- 1
Алгебра Хопфа — ассоциативная алгебра над полем , имеющая единицу и являющаяся также коассоциативной коалгеброй с коединицей (таким образом, являющаяся биалгеброй ) c специального вида. Названа в честь Хайнца Хопфа .
Алгебры Хопфа встречаются в алгебраической топологии , где они впервые возникли в связи с концепцией H-пространства , в теории , в теории групп (благодаря концепции группового кольца ) и не только. Частая распространенность делает их одним из самых известных примеров биалгебр . Алгебры Хопфа также изучаются как самостоятельный объект в связи с большим количеством определённых классов алгебр Хопфа и проблем их классификации.
Определение
Алгебра Хопфа — ассоциативная и биалгебра H над полем вместе с -линейным отображением (называемым антиподом ) таким, что следующая диаграмма коммутативна :
Здесь Δ — коумножение биалгебры, ∇ — её умножение, η — её единица и ε — её коединица. В обозначениях Свидлера, это свойство также может быть выражено как:
- .
Приведённое определение можно обобщить на алгебры над кольцами (достаточно в определении заменить поле на коммутативное кольцо ).
Определение алгебры Хопфа двойственно самому себе (это отражено в симметрии приведённой диаграммы), в частности, пространство, двойственное к H (которое всегда можно определить, если H является конечномерным ) автоматически является алгеброй Хопфа.
Свойства антипода
Антипод S иногда обязан иметь R -линейную инверсию, которая является автоматической в конечномерном случае, или если H коммутативна или кокоммутативна (или, вообще говоря, ).
Вообще говоря, S — , так S 2 — гомоморфизм , который является поэтому автоморфизмом , если S было обратимо (как может требоваться).
Если , то алгебра Хопфа, как говорят, является запутанной (и основная алгебра с запутанностью — *-алгебра ). Если H — конечномерная по полю характеристики ноль, коммутативная, или кокоммутативная, то это — запутанная алгебра.
Если биалгебра B допускает антипод S , то S единственен («биалгебра допускает самое большее 1 структуру алгебры Хопфа»).
Антипод — аналог к отображению инверсии на группе, которая посылает к .
Подалгебры Хопфа
Подалгебра A алгебры Хопфа H является подалгеброй Хопфа, если она является подкоалгеброй H и антипод S отображает A в A . Другими словами, подалгебра Хопфа A — это подпространство в алгебре Хопфа, замкнутое относительно умножения, коумножения и антипода. Теорема Николса — Зеллер ( Nichols — Zoeller ) о свободности ( 1989 ) утверждает, что любой натуральный R -модуль имеет конечный ранг и свободен , если H конечномерна, что даёт обобщение теоремы Лагранжа для подгрупп . Как следствие этой теории, подалгебра Хопфа полупростой конечномерной алгебры Хопфа автоматически полупроста.
Подалгебра Хопфа A называется правой нормальной подалгеброй алгебры Хопфа H , если она удовлетворяет условию стабильности, для всех h из H , где присоединённое действие определено как для всех a из A и h из H . Точно так же подалгебра Хопфа K является левой нормальной в H если она инвариантна при левом сопряжении, определенном как для всех k из K . Оба условия нормальности эквивалентны, если антипод S биективен. В этом случае говорят, что A = K является нормальной подалгеброй Хопфа.
Нормальная подалгебра Хопфа A в H удовлетворяет условию (равенства подмножеств H ): , где обозначает ядро коединицы K . Это условие нормальности подразумевает, что — идеал Хопфа алгебры H (то есть является идеалом алгебры в ядре коединицы, коидеалом коалебры и устойчив под действием антипода). Как следствие, определена факторалгебра Хопфа и эпиморфизм , аналогично соответствующим конструкциям нормальных подгрупп и факторгрупп в теории групп .
Примеры
- Групповая алгебра . Пусть G — группа . Алгебра R G — ассоциативная алгебра над R , с единицей. Если мы определим
- Δ : R G → R G ⊗ R G , Δ( g ) = g ⊗ g для любого g из G ,
- ε : R G → R , ε ( g ) = 1 для любого g из G ,
- S : R G → R G , S ( g ) = g −1 для любого g из G ,
то R G превращается в алгебру Хопфа.
- Диаграмма китайских иероглифов - связный граф, имеющий лишь трехвалентные вершины, с выделенным ориентированным циклом (петлей Вильсона), и фиксированным циклическим порядком тройки ребер, которые выходят из каждой вершины, не лежащей на петле Вильсона. Группа китайских диаграмм порядка - свободный -модуль, порожденный -вершинными диаграммами (которые рассматриваются с точностью до естественной эквивалентности), факторизованный по подмодулю, порожденному всевозможными -соотношениями .
Когомологии групп Ли
Алгебра когомологий группы Ли — алгебра Хопфа: умножение — стандартное произведение в кольце когомологий , а коумножение имеет вид
в силу умножения группы . Это наблюдение было фактически источником понятия алгебры Хопфа. Используя эту структуру, Хопф доказал структурную теорему для алгебры когомологий групп Ли.
Теорема Хопфа Пусть A — конечномерная кокоммутативная алгебра Хопфа над полем характеристики 0. Тогда A (как алгебра) — свободная внешняя алгебра с генераторами нечетной степени.
Квантовые группы
Все примеры выше являются либо коммутативными (то есть умножение ), либо кокоммутативными (то есть Δ = T ∘ Δ , где T : H ⊗ H → H ⊗ H есть перестановка тензорных сомножителей, определенная как T ( x ⊗ y ) = y ⊗ x ) . Другими интересными примерами алгебр Хопфа — некоторые деформации, или « квантования », примера 3, которые не являются ни коммутативными, ни кокоммутативными. Эти алгебры Хопфа часто называют « квантовыми группами ». Идея состоит в следующем: обычная алгебраическая группа может быть описана в терминах алгебры Хопфа регулярных функций. Мы можем тогда думать о деформации этой алгебры Хопфа как об описании некоторой «квантованной» алгебраической группы (хотя она и не является алгебраической группой ни в каком смысле). Многие свойства алгебраических групп, а также конструкции с ними имеют свои аналоги в мире деформированных алгебр Хопфа. Отсюда название «квантовая группа».
Аналогия с группами
Группы могут быть аксиоматизированы при помощи тех же диаграмм (эквивалентностей, операций), что и алгебры Хопфа, где H — множество, а не модуль. В этом случае:
- поле R заменено множеством из 1 элемента
- есть естественная коединица (отображение в единственный элемент)
- есть естественное коумножение (диагональное отображение)
- единица — нейтральный элемент группы
- умножение — умножение в группе
- антипод — взятие обратного элемента в группе
В этом смысле о группах можно думать как о алгебрах Хопфа над .
Примечания
- Dăscălescu, Năstăsescu & Raianu (2001), Prop. 4.2.6, от 6 октября 2014 на Wayback Machine
- Dăscălescu, Năstăsescu & Raianu (2001), Remarks 4.2.3, от 16 апреля 2014 на Wayback Machine
- . Дата обращения: 4 июля 2011. 4 марта 2016 года.
- S. Montgomery, Hopf algebras and their actions on rings, Conf. Board in Math. Sci. vol. 82, A.M.S., 1993. ISBN 0-8218-0738-2
- В.А.Васильев - Топология дополнений к дискриминантам. М.: ФАЗИС, 1997.
- Hopf, 1941.
- от 9 июля 2011 на Wayback Machine , от 18 апреля 2016 на Wayback Machine , video of Simon Willerton.
Ссылки
- Dăscălescu, Sorin; Năstăsescu, Constantin; Raianu, Șerban (2001), Hopf Algebras: An introduction , Pure and Applied Mathematics, vol. 235 (1st ed.), Marcel Dekker, ISBN 978-0-8247-0481-0 .
- Pierre Cartier, (недоступная ссылка) , IHES preprint, September 2006, 81 pages
- Jurgen Fuchs, Affine Lie Algebras and Quantum Groups , (1992), Cambridge University Press. ISBN 0-521-48412-X
- H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen, Ann. of Math. 42 (1941), 22-52. Reprinted in Selecta Heinz Hopf, pp. 119—151, Springer, Berlin (1964). MR :
- (2007), Quantum groups , Australian Mathematical Society Lecture Series, vol. 19, Cambridge University Press , ISBN 978-0-521-69524-4 , MR : .
Литература
- Манин Ю. И. Введение в теорию схем и квантовые группы. — М. : МЦНМО, 2012. — 256 с. — ISBN 978-5-94057-635-8 .
- 2021-06-21
- 1