Interested Article - Теорема Линделёфа о многограннике

Теорема Линделёфа о многограннике наименьшей площади при заданном объёме теорема , доказанная Лоренсом Линделёфом в 1869 году .

Формулировка

Среди всех выпуклых многогранников трёхмерного евклидова пространства с данными направлениями граней и с данным объёмом наименьшую площадь поверхности имеет многогранник, описанный вокруг шара .

Замечания

Вариации и обобщения

  • Теорема справедлива в евклидовом пространстве любой размерности большей или равной 2 и может быть выведена из неравенства Брунна — Минковского .
  • На евклидовой плоскости аналогом теоремы Линделёфа о многограннике наименьшей площади при заданном объёме является следующая теорема Люилье :
    • Из всех выпуклых многоугольников, стороны которых имеют данное направление и периметр которых имеет заданную длину, наибольшую площадь имеет многоугольник, описанный вокруг окружности .

Примечания

  1. L. Lindelöf, Propriétés générales des polyèdres qui, sous une étendue superficielle donnée referment le plus grand volume // Bull. de St. Pét. XIV. 237—269 (1869). Clebsch Ann. II. 150—159. 1870 (1869).
  2. А. Д. Александров , Выпуклые многогранники . М.; Л.: ГИТТЛ, 1950. Второе издание: А. Д. Александров , Избранные труды. Том 2. Выпуклые многогранники . Новосибирск: Наука, 2007. ISBN 978-5-02-023184-9
  3. Л. А. Люстерник , // Успехи мат. наук, 2 , 47-54 (1936).
  4. Л. А. Люстерник , Выпуклые фигуры и многогранники . М.: ГИТТЛ, 1956.
Источник —

Same as Теорема Линделёфа о многограннике