Мордовия Арена
- 1 year ago
- 0
- 0
Декеракт | |
---|---|
Тип | Правильный десятимерный политоп |
Символ Шлефли | {4,3,3,3,3,3,3,3,3} |
9-мерных ячеек | 20 |
8-мерных ячеек | 180 |
7-мерных ячеек | 960 |
6-мерных ячеек | 3360 |
5-мерных ячеек | 8064 |
4-мерных ячеек | 13440 |
Ячеек | 15360 |
Граней | 11520 |
Рёбер | 5120 |
Вершин | 1024 |
Вершинная фигура | Правильный 9-симплекс |
Двойственный политоп |
Декера́кт — десятимерный гиперкуб , аналог куба в десятимерном пространстве. Определяется как выпуклая оболочка 1024 точек. Он может быть назван по символу Шлефли {4,3 8 }, будучи составленным из 3 9-кубов вокруг каждой 8-грани. Слово «декеракт» — портманто из слов « тессеракт » и греч. δεκα — десять измерений. Также он может быть назван как икосаксеннон или икоса-10-топ от греч. εικοσα — двадцать и топ — 10- политоп . Политоп, двойственный к 10-кубу, называется (или 10-гипероктаэдр).
Если применить к декеракту альтернацию (удаление чередующихся вершин), можно получить однородный десятимерный многогранник, называемый , который является представителем семейства полугиперкубов .
Если у декеракта — длина ребра , то существуют следующие формулы для вычисления основных характеристик тела:
10- гиперобъём :
9- гиперобъём гиперповерхности:
Радиус описанной гиперсферы:
Радиус вписанной гиперсферы:
Декеракт состоит из:
Декеракт можно визуализировать либо параллельным, либо центральным проецированием. В первом случае обычно применяется косоугольная параллельная проекция, которая представляет собой 2 равных гиперкуба размерности n-1, один из которых может быть получен в результате параллельного переноса второго (для декеракта это 2 эннеракта ), вершины которых попарно соединены. Во втором случае обычно используют диаграмму Шлегеля , которая выглядит как гиперкуб размерности n-1, вложенный в гиперкуб той же размерности, у которых вершины также попарно соединены (для декеракта проекция представляет собой эннеракт , вложенный в другой эннеракт).
Основные выпуклые правильные и однородные политопы в размерностях 2—10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A n | B n | I₂(p) / D n | E₆ / / E₈ / F₄ / G₂ | |||||||||
Правильный многоугольник | Правильный треугольник | Квадрат |
Правильный
p-угольник |
Правильный шестиугольник | Правильный пятиугольник | |||||||
Однородный многогранник | Правильный тетраэдр | Правильный октаэдр • Куб | Полукуб | Правильный додекаэдр • Правильный икосаэдр | ||||||||
Пятиячейник | 16-ячейник • Тессеракт | Полутессеракт | 24-ячейник | 120-ячейник • 600-ячейник | ||||||||
Правильный 5-симплекс | 5-ортоплекс • 5-гиперкуб | 5-полугиперкуб | ||||||||||
Правильный 6-симплекс | 6-ортоплекс • 6-гиперкуб | • | ||||||||||
Правильный 7-симплекс | • 7-гиперкуб | • • | ||||||||||
Правильный 8-симплекс | • 8-гиперкуб | • • | ||||||||||
Правильный 9-симплекс | • 9-гиперкуб | |||||||||||
Правильный 10-симплекс | • | |||||||||||
Однородный n - политоп | Правильный n - симплекс | n - ортоплекс • n - гиперкуб | n - полугиперкуб | • • | n - пятиугольный многогранник | |||||||
Темы: Семейства политопов • Правильные политопы • Список правильных политопов и их соединений |