Interested Article - Граф Дезарга

Граф Дезарга дистанционно-транзитивный кубический граф с 20 вершинами и 30 рёбрами . Назван в честь Жерара Дезарга . Возникает в некоторых комбинаторных построениях, имеет высокую степень симметрии, это единственный известный непланарный кубический частичный куб и применяется в химических базах данных.

Имя «граф Дезарга» употребляется также для графа с десятью вершинами, дополнения графа Петерсена , который можно получить как графа Дезарга с 20 вершинами.

Построение

Существует несколько различных путей построения графа Дезарга:

  • Он является обобщённым графом Петерсена G (10, 3). Для получения графа Дезарга этим способом соединяем десять вершин в правильный десятиугольник и соединяем оставшиеся десять вершин в звезду с десятью вершинами, соединяя пары вершин на расстоянии три. Граф Дезарга состоит из 20 рёбер этих двух многоугольников вместе с дополнительными 10 рёбрами, соединяющими точки одного десятиугольника с соответствующими точками другого.
  • Он является графом Леви конфигурации Дезарга . Эта конфигурация состоит из десяти точек и десяти прямых, образующих перспективу двух треугольников , их центр перспективы и их ось перспективы. Граф Дезарга имеет по вершине для каждой точки, по вершине для каждой прямой, и по одному ребру для каждой пары точка-прямая, если точка лежит на этой прямой. Теорема Дезарга , названная в честь французского математика 17-го века Жерара Дезарга , описывает множество точек и прямых, образующих эту конфигурацию. Конфигурация и граф получили своё название по этой теореме.
  • Он является двойным двудольным покрытием графа Петерсена и образуется путём замены каждой вершины графа Петерсена парой вершин и каждого ребра графа Петерсена парой пересекающихся рёбер.
  • Он является двудольным графом Кнезера H 5,2 . Его вершины можно пометить десятью двухэлементными подмножествами и десятью трёхэлементными подмножествами пятиэлементного множества. В этой разметке ребро соединяет вершины, если одно из соответствующих множеств содержится в другом.
  • Граф Дезарга является гамильтоновым и может быть построен по LCF-нотации : [5,−5,9,−9] 5 .

Алгебраические свойства

Граф Дезарга является симметричным графом — он имеет симметрии, которые переводят любую вершину в любую другую вершину и любое ребро в любое другое ребро. Его группа симметрии имеет порядок 240 и изоморфна произведению симметрических групп с 5 вершинами на группу порядка 2.

Можно представить это произведение симметрических групп в терминах построения графа Дезарга — симметрическая группа с 5 точками является группой симметрии конфигурации Дезарга, а подгруппа второго порядка обменивает роли вершин, которые представляют конфигурацию Дезарга и вершин, которые представляют прямые. Альтернативно, в терминах двудольного графа Кнесера, симметрическая группа с пятью точками действует раздельно на двухэлементном и трёхэлементном подмножествах пяти точек, и дополнение подмножеств образует группу порядка два, которая преобразует один тип подмножеств в другой. Симметрическая группа из пяти точек является также группой симметрии графа Петерсена, а подгруппа порядка 2 обменивает вершины в каждой паре вершин, образованных при двойном покрытии.

Обобщённый граф Петерсона G ( n , k ) является вершинно-транзитивным тогда и только тогда, когда n = 10 и k = 2 или если k 2 ≡ ±1 (mod n ) и является рёберно-транзитивным только в семи следующих случаях: ( n , k ) = (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5). Таким образом, граф Дезарга — один из семи симметричных обобщённых графов Петерсена. В эти семь графов входят кубовой граф G (4, 1), граф Петерсена G (5, 2), граф Мёбиуса-Кантора G (8, 3), граф додекаэдра G (10, 2) и граф Науру G (12, 5).

Характеристический многочлен графа Дезарга равен

Таким образом, граф Дезарга является целочисленным графом — его спектр состоит полностью из целых чисел.

Приложения

В химии граф Дезарга известен как граф Дезарга — Леви . Он используется для построения системы стереоизомеров пенталигандов . В этом приложении тридцати рёбрам графа соответствуют лиганд.

Другие свойства

Граф Дезарга имеет 6, и является наименьшим кубическим графом с таким числом пересечений (последовательность в OEIS ). Он является единственным известным непланарным кубическим частичным кубом .

Граф Дезарга имеет хроматическое число 2, хроматический индекс 3, радиус 5, диаметр 5 и обхват 6. Он также является 3- вершинно-связным и рёберно 3-связным гамильтоновым графом .

Все кубические дистанционно-регулярные графы известны. Граф Дезарга — один из этих графов.

Галерея

Примечания

  1. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  2. I. N. Kagno. Desargues' and Pappus' graphs and their groups. — American Journal of Mathematics. — The Johns Hopkins University Press, 1947. — Т. 69. — С. 859–863. — doi : . .
  3. R. Frucht, J. E. Graver, M. E. Watkins. The groups of the generalized Petersen graphs // Proceedings of the . — 1971. — Т. 70 , вып. 02 . — С. 211—218 . — doi : .
  4. Balaban. Graphs of multiple 1, 2-shifts in carbonium ions and related systems // Rev. Roum. Chim.. — 1966. — Т. 11 . — С. 1205 .
  5. Kurt Mislow. Role of pseudorotation in the stereochemistry of nucleophilic displacement reactions // Acc. Chem. Res.. — 1970. — Т. 3 , вып. 10 . — С. 321–331 . — doi : .
  6. Sandi Klavžar, Alenka Lipovec. Partial cubes as subdivision graphs and as generalized Petersen graphs // Discrete Mathematics . — 2003. — Т. 263 . — С. 157–165 . — doi : .
  7. A. E. Brouwer, A. M. Cohen, A. Neumaier. Distance-Regular Graphs.. — New York: Springer-Verlag, 1989.
Источник —

Same as Граф Дезарга