Interested Article - Дождь

Дождь в Мексике

До́ждь атмосферные осадки , выпадающие из облаков в виде капель жидкости со средним диаметром от 0,5 до 6—7 мм .

Осенние дожди. Южная Эстония
Летний дождь в Санкт-Петербурге

Жидкие осадки с меньшим диаметром капель называются моросью . Капли с диаметром больше 6—7 мм разбиваются в процессе падения из облаков на меньшие капли, поэтому даже при сильнейшем ливне диаметр капель не превышает 6—7 мм. Интенсивность дождя обычно составляет от 0,25 мм/ч (моросящий дождь) до 100 мм/ч (ливень) .

Дождь издалека
Двойная радуга на Аляске

Механизм образования

Дождь выпадает, как правило, из смешанных облаков (преимущественно слоисто-дождевых и высокослоистых ), содержащих при температурах ниже 0 °C переохлаждённые капли и ледяные кристаллы . Упругость насыщения водяного пара над каплями больше, чем над ледяными кристаллами при той же температуре, поэтому облако, даже не насыщенное водяным паром по отношению к каплям воды, будет перенасыщенно по отношению к кристаллам, что приводит к росту кристаллов при одновременном испарении капель. Укрупняясь и утяжеляясь, кристаллы выпадают из облака , примораживая к себе при этом переохлаждённые капли. Входя в нижнюю часть облака или под него в слои с температурой 0 °C, они тают, превращаясь в дождевые капли. Меньшая роль в образовании дождя принадлежит слиянию облачных капель между собой.

Если солнце освещает летящие дождевые капли, то при определённых условиях можно наблюдать радугу .

Долгое отсутствие дождя приводит к засухе .

Условия образования

Дождь как явление может присутствовать на планетах только при определённых температурных условиях в их атмосферах . Планета Земля и Титан (спутник Сатурна ) [ источник не указан 522 дня ] обладают такими условиями. Суть их сводится к тому, что температурные условия в нижних слоях атмосфер указанных небесных тел могут поддерживать в двух или трёх агрегатных состояниях какое-либо вещество. На Земле — это вода , нижние слои её атмосферы позволяют пребывать воде во всех трёх агрегатных состояниях . На Титане [ источник не указан 522 дня ] температурные условия способствуют выпадению метановых дождей , так как метан в таких условиях может быть и жидкостью, и газом [ источник не указан 522 дня ] .

Образование дождевых облаков

Конвективные осадки:
влажный воздух нагревается сильнее, чем окружающий его сухой воздух, и движется вверх; в результате происходят кратковременные ливневые дожди
Орографические осадки:
воздух увлажняется над океаном, затем проходит над сушей, охлаждаясь на горных хребтах и вызывая дождь

Образование дождевых облаков происходит или от смешивания двух масс воздуха, близких к насыщению , но различных температур, или при соприкосновении влажного воздуха с более холодной поверхностью земли, или в восходящих воздушных течениях. В первом случае влажность смеси всегда превышает влажность смешивающихся масс, и воздух может сделаться насыщенным; дожди, являющиеся от этой причины, слабы, хотя при продолжительном её действии может выпасть большое количество воды. К такого рода дождям относятся мелкие, но продолжительные осенние дожди европейских стран. От второй причины дожди часто идут в прибрежных странах при морских ветрах в холодную часть года. Самые обильные осадки выпадают при восхождении воздуха, особенно в тёплых странах, где содержание водяного пара в воздухе особенно значительно: переходя в верхние, более разреженные, слои атмосферы воздух расширяется, причём температура его понижается, он приближается к степени насыщения и даже переходит её, и часть водяных паров конденсируется . Сюда относятся осадки, выпадающие при поднятии влажного воздуха по склонам гор , а также осадки в областях формирования циклонов ( барометрических минимумах ).

Распределение осадков

Распределение дождей и осадков вообще по земной поверхности и по временам года имеет важное климатическое значение.

По регионам

Весьма значительное количество дождей в течение года выпадает в штилевой полосе над океанами вследствие восхождения тёплого и богатого паром воздуха, приносимого пассатами . Над Атлантическим океаном штилевая полоса (область экваториальных дождей) передвигается в течение года то на север, то на юг между параллелями 5° ю. ш. и 12° с. ш. Дожди здесь идут бо́льшую часть года днём, ночью же небо обычно проясняется. Наибольшее годовое количество осадков, впрочем, выпадает не здесь, а там, где влажные ветры встречают высокий горный хребет, перпендикулярный к ним. Замечательным примером могут служить осадки в Черапунджи , на южном склоне гор , к северу от Бенгальского залива . В течение шести месяцев (с апреля по сентябрь) здесь дует юго-западный муссон ; приходя с Индийского океана , он, при высокой температуре, богат водяным паром, а проходя над влажной и жаркой болотистой равниной, отделяющей горы Кхаси от Бенгальского залива, ещё более обогащается им. Уже немного поднявшись по склонам гор, он доходит до насыщения и выделяет массу осадков. В Черапунджи ежегодно (или, лучше сказать, в течение шести тёплых месяцев), в среднем, выпадает 11 777 мм дождя . К дождливым местностям, кроме южного склона гор Кхаси, относятся ещё: Малабарский берег на юго-западе Индостана (на самом берегу выпадает ежегодно более 3000 мм, а на склоне гор — более 6000 мм осадков), равнины Амазонки , часть Центральной Америки , Зондские и Молуккские острова (более 1500 мм).

В средних широтах очень дождливые регионы — бо́льшая часть Китая и вся Япония . Местности, особенно бедные осадками: Сахара , Калахари , Аравия , бо́льшая часть Ирана , Арало-Каспийская низменность , бо́льшая часть нагорий Азии , внутренняя Австралия , западные нагорья Северной и Южной Америки , высокие широты северного полушария , области пассатов на океанах. Причины этого различны; так, в Сахаре и Арало-Каспийской низменности бо́льшую часть года дуют ветры с севера, удаляющиеся, по мере движения к югу, от степени насыщения и потому сухие; барометрические минимумы проходят здесь редко, а если и проходят, то вследствие большой сухости воздуха обильными осадками не сопровождаются. Нагорья Азии окружены горами, которые конденсируют влагу, приносимую ветрами, на своих внешних склонах, внутрь же проходят ветры сухие. Пассаты , при своём движении в более жаркие страны, постепенно нагреваются, и если идут над океанами, то обогащаются паром, однако степени насыщения не достигают и являются ветрами сухими. Дожди в них выпадают почти исключительно при прохождении ураганов , обычно сопровождающихся страшнейшими ливнями.

Распределение осадков по месяцам в разных регионах мира

Распределение осадков в умеренных широтах обусловливается, главным образом, направлением движения и повторяемостью циклонов и антициклонов (барометрических минимумов и максимумов). Первые, как было упомянуто ранее, сопровождаются большой облачностью , осадками; вторые — сухой, ясной погодой. Кроме того, как и вообще, большое влияние оказывают распределение суши и воды и горных хребтов. В Европе дождевые области обычно окружают циклон со всех сторон, часто в виде концентрических с изобарами зон. Наиболее обильные осадки являются не вблизи самого циклона, а у границ его области, между изобарами 745—760 мм ртутного столба, а также в резко выдающихся выпуклостях изобар, указывающих на существование второстепенных минимумах в области главного циклона, большей частью — в юго-восточной части последнего. Во второстепенных минимумах наблюдаются вихреобразные движения воздуха, сопровождаемые ливнями и грозами .

В России

В России осадки приходят, в основном, с циклонами из Малой Азии , Средиземного , Чёрного морей, в меньшей степени — из Северной Атлантики . Они распределены весьма неравномерно, и наибольший контраст наблюдается по различные стороны Кавказских гор : наибольшее годовое количество их на восточном берегу Чёрного моря и на Кавказе (более 2000 мм), а самое малое количество осадков — на северном побережье Каспийского моря (до 200 мм в год).

Много осадков выпадает на Северо-Западе Европейской территории России — в частности, в Санкт-Петербурге . Здесь влияние оказывают влажные воздушные массы Северной Атлантики. Много осадков в районе Воркуты , где влажные атлантические воздушные массы взаимодействуют на западных склонах Полярного Урала с холодными арктическими массами. Также много осадков выпадает на северо-западных склонах Алтайских гор и вдоль Салаирского кряжа .

На Дальнем Востоке много осадков выпадает на Сахалине и Курильских островах .

Дефицит осадков наблюдается в южной степной зоне России от Калмыкии до Кулундинской равнины в Алтайском крае . Хотя эти области открыты для атлантических воздушных масс — равнинный рельеф не создаёт предпосылок для осадкообразования. К востоку от Алтая и Салаирского кряжа осадков тоже мало, но уже по причине того, что туда не доходят влажные воздушные массы.

На Дальнем Востоке дефицит осадков обусловлен тем, что суша расположена к западу от Тихого океана , и перенос воздушных масс общей циркуляцией атмосферы невозможен. Здесь осадки носят только муссонный характер.

Мало осадков также на берегах и островах Северного Ледовитого океана , вследствие того, что здесь воздух холоден и потому содержит мало водяного пара.

По времени года

По Земле осадки, в целом, распределены весьма неравномерно в течение года. Сюда относятся области муссонов (южно-азиатская, восточно-азиатская, африканская и австралийская). Здесь в течение холодных месяцев дуют сухие ветры, и осадков не выпадает или выпадает очень мало; тёплые месяцы, напротив того, весьма дождливы. Сюда же относятся южные части средних широт ( субтропические страны ); здесь лето сухо, а зима , весна и осень дождливы. Это происходит от передвижения к северу и югу областей высокого атмосферного давления, находящихся у полярных границ пассатов. В Старом свете эта полоса охватывает Месопотамию , Иран , восточное Закавказье и более низкие места Центральной Азии .

В умеренных широтах резкой разницы в распределении осадков по временам года вообще не замечается. В Европе наибольшее количество осадков выпадает: в Норвегии — в сентябре—декабре, в Шотландии и на Фарерских островах — в декабре—январе, в Швеции — в августе, в Дании — в августе—сентябре, в Нидерландах и северной Германии — в августе, в средней и южной Германии — в июне—августе, в Бельгии — в сентябре, в западной и северной Франции — в октябре-ноябре, в южной Франции и большей части Италии — в октябре, в средней и восточной Европе — летом, в северной Швейцарии — в августе, в Австрии , Венгрии и Чехии — в июне, в западной и южной частях Пиренейского полуострова — зимой, на внутреннем плоскогорье — осенью и весной, на Балканском полуострове — зимой и осенью.

В России, в целом, наибольшее количество осадков выпадает летом, что характерно для умеренного климата: наиболее дождливый месяц в Средней полосе, на Урале и в Западной Сибири — июнь , на юге - июнь, на севере - август. Однако на Дальнем Востоке, с муссонным климатом, пик осадков приходится на осень, а на Черноморском побережье Кавказа — на зиму и весну. Значительные особенности распределения по году осадков наблюдаются в Алтайском крае, Республике Алтай, Хакасии, Тыве и на юге Кемеровской области, что связано с наличием высоких горных систем в глубине континента. Так, например, в Бийске самым дождливым месяцем является июль, хотя в расположенном всего в 300 км Рубцовске - октябрь.

Дождевые капли

Типы дождевых капель: A — несуществующий тип капель (форма капли под предметом перед падением); B — капли размером менее 2 мм (почти круглые); C — капли более 2 мм (сплющенная форма из-за трения о воздух); D — капли менее 5 мм (трение изменяет форму всё больше); E — процесс разделения капли размером свыше 5 мм на несколько.

Выпадение капель происходит, когда маленькие капли воды сливаются в более крупные, или когда капли воды замерзают на кристалле льда — этот процесс известен как . Обычно сопротивление воздуха заставляет капельки воды оставаться висеть в облаке. Когда возникает турбулентность воздуха , маленькие капельки воды сталкиваются, производя большие капли. Поскольку эти крупные капли воды опускаются, слияние продолжается, так что капли становятся достаточно тяжёлыми, чтобы преодолеть сопротивление воздуха и выпасть в виде дождя. Наиболее часто слияние происходит в облаках, где температура выше точки замерзания воды . В облаках, где температура ниже точки замерзания воды, когда кристаллы льда набирают достаточную массу, они начинают падать вниз. Как правило, это требует от кристаллов льда большей массы, чем от водяных капель для начала их выпадения. Этот процесс зависит от температуры, поскольку переохлаждённые капли воды существуют только в облаках, где температура ниже точки замерзания воды. Кроме того, из-за большой разницы температур между облаком и землёй, эти кристаллы льда могут растаять при выпадении, становясь дождём .

Дождевые капли имеют размеры от 0,1 до 6-7 мм — средний диаметр, при превышении которого они, как правило, распадаются. Меньшие капли называют облачными, и их форма является сферической . Когда капля увеличивается в размерах, её форма становится всё более сплюснутой , благодаря давлению встречного воздушного потока. Большие капли дождя имеют более плоский низ. Очень крупные капли имеют форму парашюта . Вопреки распространённому мнению, их форма вовсе не напоминает слезинку . Самые большие капли дождя на Земле были зафиксированы в Бразилии и на Маршалловых островах в 2004 году — некоторые из них достигали диаметра 10 мм. Их большой размер объясняется формированием конденсата на крупных частицах дыма или столкновением между каплями при большой их концентрации в воздухе .

Интенсивность и продолжительность дождя, как правило, обратно пропорциональны, то есть непогода высокой интенсивности, вероятно, будет кратковременной, а продолжительность слабых осадков может быть значительной . Капли дождя, образующиеся из тающего града , как правило, больше остальных . Скорость падения дождевых капель диаметром 0,5 мм на уровне моря и без ветра составляет 2 м/с, в то время как капли диаметром 5 мм имеют скорость от 9 м/с. Звук падения капель дождя о воду вызывается пузырьками воздуха, колеблющимися под водой .

Кислотные дожди

Кислотные дожди являются большой проблемой для многих регионов, где есть промышленные предприятия, которые выбрасывают оксиды серы и азота , дающие различные кислоты , в том числе и сильные азотную и серную кислоты.

Виды и названия дождей

  • Грибной дождь — мелкий, моросящий, дробный дождь из низких туч, идущий в грибную пору при свете солнца.
  • Слепой дождь — дождь, идущий при свете солнца; в России о таком дожде в шутку говорят: « Царевна плачет » , в Японии говорят: « Жена-лисица следует в дом своего мужа » .
  • Грозовой дождь (дождь с грозой).
  • Градный [ неизвестный термин ] дождь (дождь с градом).
  • Снежный дождь (дождь со снегом).
  • Ледяной дождь .
  • Купальный (окатный) дождь.
  • Ливень (проливной дождь).
  • Моросящий дождь ( морось ).
  • Полосовой дождь (идущий полосами).
  • Косой дождь, косохлёст .
  • Ситный дождь — мелкий дождь, как будто «просеянный сквозь сито ».
  • Затяжной (обложной) дождь.
  • Спорый дождь .
  • Муссонный дождь.

Также существуют экзотические виды дождей, такие как каменный, кровяной, чёрный, жёлтый, молочный, из зёрен овса, ржи, листьев, цветов, из насекомых, лягушек и рыб .

Дождь в культуре и в хозяйстве

« » ( К. Е. Маковский , 1872)
«Дождь в Ябакэе» ( Хасигути Гоё , 1918)

Отношение людей к дождю по всему миру различно. В регионах с умеренным климатом, таких как Европа , дождь имеет оттенок грусти: «Он плачет в моём сердце, как дождь на город» — пишет Поль Верлен , тогда как солнце ассоциируется с радостью . В дополнение к этому, традиционно-пессимистичный взгляд на дождь иногда сменяется положительными значениями, связанными с земледелием (плодородие, чистота) или с эстетическим чувством .

В засушливых районах — например, в некоторых частях Африки , Индии , Ближнего Востока (что, в частности, отмечено и в Библии ) — дождь считается благословением и вызывает воодушевление , поскольку своевременные осадки имеют принципиальное экономическое значение в регионах, где распределение питьевой и оросительной воды обусловлены выпадением дождей. В Ботсване , на языке сетсвана , слово «дождь» — « пула » — используется как название национальной валюты, в знак признания роли осадков для этой пустынной страны .

Во многих культурах появились способы для защиты от дождя (куртки, дождевики, зонты ), и разработаны дренажные системы ( желоба , водостоки, канавы, каналы). Там, где осадки выпадают в изобилии круглый год или сезонно ( муссоны ), люди предпочитают строить водонепроницаемое жилище .

Многие люди находят запах во время и сразу после дождя характерно приятным. В его основе лежат 3 составляющие. Источником запаха под названием « петрикор » является масло растений, которое поглощается почвой, а затем выбрасывается в воздух во время дождя . Другие воспроизводящие аромат дождя реакции — высвобождение химических веществ почвенных бактерий и выделяемый во время грозы озон .
Во время грозы молния расщепляет молекулы кислорода и азота в атмосфере , а они, в свою очередь, трансформируются в оксид азота . Это вещество взаимодействует с другими химическими компонентами воздуха , а высвободившиеся атомы кислорода образуют в результате некоторое количество озона (O 3 ) — трёхатомного кислорода, имеющего резкий запах, который, тем не менее, нравится многим людям. Когда кто-то утверждает, что чувствует запах дождя, это говорит о том, что ветер с приближающегося шторма несёт с собой запах озона .

Дождевая вода, естественно, издавна приносила пользу сельскому хозяйству и способствовала росту трав, поэтому от неё зависело благополучие как земледельческих, так и скотоводческих народов . Появлялись боги и духи , управляющие дождём, а также заклинания (заклички), используемые для вызывания или прекращения осадков. Во многих культурах выполняется специальный обряд вызова дождя , исполняемый во время засухи.

Дождевая вода также собиралась в ёмкости с питьевой и хозяйственной целью. В настоящее время повысившаяся кислотность дождей и наличие пыли сделали использование дождевой воды для пищевых целей в промышленных регионах мира занятием небезопасным для здоровья, хотя кое-где эта вода до сих пор употребляется в пищу.

Урбанизация неизбежно учитывает фактор отвода дождевых стоков. В городах почва скрыта под искусственными покрытиями, препятствующими впитыванию выпадающей с дождём воды, что требует разработки систем дренажа и отвода вод, иначе, при неразвитой инфраструктуре, увеличивается риск подтопления города, подмытия фундаментов домов, затопления подвалов и подземных переходов. Так, для предотвращения затопления Нью-Йоркского метро просачивающимися с поверхности грунтовыми водами, на 2012 год функционировали 753 , выкачивавших каждую минуту около 2,5 тысяч литров воды. В Вашингтоне , Лондоне и Москве туннели метро проложены ещё глубже, что увеличивает нагрузку от стоков, вызванных ливнями .

Некоторые продолжительные дожди, отмеченные в летописях

Дожди в астрономии

При входе в атмосферу Земли поток метеоров образует так называемый звёздный дождь , или звездопад . Падение метеоритов называется метеоритным дождём (железным, каменным, огненным дождём). В былые времена метеорный и метеоритный дожди не различали между собой, поэтому оба явления назывались огненным дождём.

Дожди на других небесных телах

Дожди как явление не уникальны для Земли, они могут быть и на других планетах. Состав и характер дождей зависят от физических условий в атмосфере планеты и её состава.

Галерея

См. также

Примечания

  1. // Большая российская энциклопедия [Электронный ресурс]. — 2017.
  2. Марк Софер. // Наука и жизнь . — 2018. — № 8 . — С. 2—13 .
  3. от 15 января 2012 на Wayback Machine (нем.)
  4. Glossary of Meteorology. (англ.) . American Meteorological Society (июнь 2000). 4 августа 2012 года.
  5. Paul Sirvatka. (англ.) . College of DuPage (2003). 4 августа 2012 года.
  6. Alistair B. Fraser. (англ.) . Pennsylvania State University (15 января 2003). 4 августа 2012 года.
  7. United States Geological Survey. (англ.) . United States Department of the Interior (2009). 4 августа 2012 года.
  8. Paul Rincon (2004-07-16). (англ.) . British Broadcasting Company. из оригинала 21 декабря 2019 . Дата обращения: 29 июля 2012 .
  9. Oguntoyinbo J.S., Akintola F.O. (англ.) // Hamburg Symposium, 1983, Hydrology of Humid Tropical Regions : сборник. — 1983. — Vol. 140 . — P. 63—74 . 22 июля 2019 года.
  10. Robert A. Houze Jr. (англ.) // (англ.) : journal. — 1997. — October ( vol. 78 , no. 10 ). — P. 2179—2196 . — ISSN . — doi : . — Bibcode : .
  11. Norman W. Junker. (англ.) . Hydrometeorological Prediction Center (2008). 4 августа 2012 года.
  12. Andrea Prosperetti and Hasan N. Oguz. (англ.) // (англ.) : journal. — Annual Reviews , 1993. — Vol. 25 . — P. 577—602 . — doi : . — Bibcode : . 9 января 2009 года.
  13. Ryan C. Rankin. (англ.) . The Physics of Bubbles, Antibubbles, and all That (June 2005). Дата обращения: 9 декабря 2006. 4 августа 2012 года.
  14. Паустовский К. Г. от 3 июня 2012 на Wayback Machine
  15. лорд Митфорд, Алджернон Легенды о самураях: традиции Старой Японии. — М. : Центрполиграф, 2010. — С. 220. — ISBN 978-5-227-02180-9
  16. Словарь русских синонимов и сходных по смыслу выражений. / Под. ред. Н. Абрамова. — М. : Русские словари, 1999.
  17. A. G. Barnston. The effect of weather on mood, productivity, and frequency of emotional crisis in a temperate continental climate (англ.) // (англ.) : journal. — 1986. — 10 December ( vol. 32 , no. 4 ). — P. 134—143 . — doi : . — Bibcode : .
  18. IANS. (англ.) . Thaindian news (23 марта 2009). 4 августа 2012 года.
  19. William Pack. (англ.) . San Antonio Express-News (11 сентября 2009). 4 августа 2012 года.
  20. Robyn Cox. (англ.) (2007). 4 августа 2012 года.
  21. Allen Burton and Robert Pitt. (англ.) . — CRC Press, LLC , 2002. — P. 4. 11 июня 2010 года.
  22. Bear, I.J.; R.G. Thomas. Nature of argillaceous odour (англ.) // Nature : journal. — 1964. — March ( vol. 201 , no. 4923 ). — P. 993—995 . — doi : . — Bibcode : .
  23. . Дата обращения: 13 февраля 2015. 13 февраля 2015 года.
  24. Yuhas, Daisy (2012-07-18). . Scientific American . из оригинала 13 января 2014 . Дата обращения: 13 июня 2020 .
  25. Алан Вейсман «Земля без людей», — М.: Эксмо, 2012, С. 35-36, ISBN 978-5-699-52979-7
  26. Е. П. Борисенков, В. М. Пасецкий «Тысячелетняя летопись необычайных явлений природы», — М.: Мысль, 1988, С. 261—353. ISBN 5-244-00212-0
  27. Paul Rincon (2005-11-07). (англ.) . BBC News. из оригинала 18 июля 2009 . Дата обращения: 25 января 2010 .
  28. . Дата обращения: 6 июля 2011. Архивировано из 7 ноября 2011 года.
  29. . Дата обращения: 6 июля 2011. Архивировано из 22 марта 2009 года.
  30. Paul Mahaffy. (англ.) . NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory. Дата обращения: 6 июня 2007. 23 июня 2012 года.
  31. Katharina Lodders. (англ.) // The Astrophysical Journal : journal. — IOP Publishing , 2004. — Vol. 611 , no. 1 . — P. 587—597 . — doi : . — Bibcode : . 6 апреля 2020 года.
  32. Harvard University and Smithsonian Institution . (англ.) // (англ.) : magazine. — 2003. — 8 January. 10 января 2010 года.

Ссылки

Источник —

Same as Дождь