Interested Article - Вполне упорядоченное множество

Вполне упорядоченное множество линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть наименьший элемент. Другими словами, это фундированное множество с линейным порядком.

Примеры

  • Пустое множество является вполне упорядоченным.
  • Простейший пример бесконечного вполне упорядоченного множества — множество натуральных чисел с естественным упорядочением.
  • Множество целых чисел не является вполне упорядоченным, так как, например, среди отрицательных чисел нет наименьшего. Однако его можно сделать вполне упорядоченным, если определить нестандартное отношение «меньше или равно» , которое обозначим и определим следующим образом:
если либо либо либо и
Тогда порядок целых чисел будет таким: В частности, будет наименьшим отрицательным числом.

Свойства

  • Согласно теореме Цермело , если принять аксиому выбора , то любое множество можно вполне упорядочить. Более того, утверждение о существовании полного порядка для любого множества эквивалентно аксиоме выбора. В частности, при наличии аксиомы выбора множество вещественных чисел можно вполне упорядочить.
  • Если X и Y — два вполне упорядоченных множества, то либо они изоморфны друг другу, либо ровно одно из них изоморфно начальному отрезку другого.

См. также

Литература

  • Н. К. Верещагин , А. Шень. // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М. : МЦНМО , 2002. — 128 с.

Примечания

  1. Дональд Кнут . Искусство программирования, том I. Основные алгоритмы. — М. : Мир , 1976. — С. 571 (15b). — 736 с.
Источник —

Same as Вполне упорядоченное множество