РНК-интерференция
- 1 year ago
- 0
- 0
Интерфере́нция све́та ( лат. interferens , от inter — между + -ferens — несущий, переносящий) — интерференция электромагнитных волн (в узком смысле - прежде всего, видимого света) — перераспределение интенсивности света в результате наложения ( суперпозиции ) нескольких световых волн . Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной .
Поскольку явление интерференции прямо зависит от длины волны, то при интерференции света, содержащего различные спектральные составляющие (цвета), например, белого света, происходит разделение этих спектральных составляющих, глазом видимые в случае белого света как радужные полосы.
Впервые явление интерференции было независимо обнаружено Гримальди (для луча, прошедшего через два близких отверстия), Робертом Бойлем и Робертом Гуком (для интерференции в тонких слоях прозрачных сред, таких как мыльные плёнки, тонкие стенки стеклянных шаров, тонкие листки слюды; они наблюдали при этом возникновение разноцветной окраски; при этом Гук заметил и периодическую зависимость цвета от толщины слоя). Гримальди впервые и связал явление интерференции с идеей волновых свойств света, хотя ещё в довольно туманном и неразвитом виде.
В 1801 году Томас Юнг (1773—1829 гг.), введя «принцип суперпозиции» , первым дал достаточно детальное и, по сути, не отличающееся от современного объяснение этого явления и ввёл в научный обиход термин «интерференция» (1803). Он также выполнил демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.
Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде . Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга . Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов . Луч света длиной волны , падая перпендикулярно к поверхности плёнки толщиной , отразится дважды — от внутренней и наружной её поверхностей. Если плёнка достаточно тонка, так что её толщина не превышает длину цуга волн падающего света, то на верхней границе раздела сред отражённые лучи будут когерентны и поэтому смогут интерферировать.
Изменение фазы проходящего через плёнку луча, в общем случае, зависит от показателя преломления плёнки и окружающих её сред. Кроме того, надо учитывать, что свет при отражении от оптически более плотной среды на половину периода. Так, например, в случае для воздуха ( ≈ ), окружающего тонкую масляную плёнку ( ≈ ), луч, отражённый от внешней поверхности будет иметь сдвиг фазы , а от внутренней — не будет. Интерференция будет конструктивной, если итоговая разница между пройденными этими лучами путями на поверхности плёнки будет составлять полуцелое число длин волн в плёнке .
То есть
Для деструктивной интерференции в данном примере необходимо, чтобы разность фаз между лучами была кратна .
То есть
Полное гашение лучей произойдет для толщин плёнки:
Если нм, то длина этой волны в масляной плёнке
При формула даёт результат нм — и это минимальная толщина плёнки для данных условий для образования деструктивной интерференции.
Лучи соседних участков спектра по обе стороны от нм интерферируют не полностью и только ослабляются. Результирующее усиление одних частей спектра и ослабление других меняет окраску плёнки. Причем малейшие изменения толщины плёнки сразу же выражаются в смещении спектра наблюдаемого цвета — этот эффект легко продемонстрировать на примере с мыльным пузырём.
Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей ( керосина или масла на поверхности воды), в мыльных пузырях , бензине , на крыльях бабочек , в цветах побежалости , и т. д.
Другим методом получения устойчивой интерференционной картины для света служит использование воздушных прослоек, основанное на одинаковой разности хода двух частей волны: одной — сразу отраженной от внутренней поверхности линзы и другой — прошедшей воздушную прослойку под ней и лишь затем отразившейся. Её можно получить, если положить плосковыпуклую линзу на стеклянную пластину выпуклостью вниз. При освещении линзы сверху монохроматическим светом образуется тёмное пятно в месте достаточно плотного соприкосновения линзы и пластинки, окружённое чередующимися тёмными и светлыми концентрическими кольцами разной интенсивности. Тёмные кольца соответствуют интерференционным минимумам, а светлые — максимумам, одновременно тёмные и светлые кольца являются изолиниями равной толщины воздушной прослойки. Измерив радиус светлого или тёмного кольца и определив его порядковый номер от центра, можно определить длину волны монохроматического света. Чем круче поверхность линзы, особенно ближе к краям, тем меньше расстояние между соседними светлыми или тёмными кольцами .
Пусть имеются две плоские волны:
и
По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:
Интенсивность задается соотношением:
Откуда с учётом:
:
Для простоты рассмотрим одномерный случай и сонаправленность поляризаций волн, тогда выражение для интенсивности можно переписать в более простом виде:
Интерференционная картина представляет собой чередование светлых и темных полос, шаг которых равен:
Примером этого случая является интерференционная картина в отраженном от поверхностей плоскопараллельной пластинки свете.
В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн, образованных от одного источника света путём амплитудного либо полевого деления волновых фронтов. Это утверждение является неверным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос. Рассмотрим две плоские волны с разными частотами:
и
По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:
Пусть некоторый прибор, обладающий некоторым характерным временем регистрации (экспозиции), фотографирует интерференционную картину. В физической оптике интенсивностью называют усредненный по времени поток световой энергии через единичную площадку ортогональную направлению распространения волны. Время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотоплёнка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии. То есть сигнал с фотоприемника пропорционален:
где под <> подразумевается усреднение. Во многих научно технических приложениях данное понятие обобщается на любые, в том числе и не плоские волны. Так как в большинстве случаев, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают:
Квадрат модуля амплитуды задается соотношением:
Откуда, подставляя напряженность электрического поля, получим:
, где , ,
С учётом определения интенсивности можно перейти к следующему выражению:
[1] , где — интенсивности волн
Взятие интеграла по времени и применение формулы разности синусов даёт следующие выражения для распределения интенсивности:
Здесь и далее используется обозначение .
В итоговом соотношении слагаемое, содержащее тригонометрические множители, называется интерференционным членом. Оно отвечает за модуляцию интенсивности интерференционными полосами. Степень различимости полос на фоне средней интенсивности называется видностью или контрастом интерференционных полос:
Рассмотрим несколько характерных случаев:
1. Ортогональность поляризаций волн.
При этом и . Интерференционные полосы отсутствуют, а контраст равен 0. Далее, без потери общности, можно положить, что поляризации волн одинаковы.
2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции .
3. В случае ( радиан ) значение функции и интерференционная картина не наблюдается. Контраст полос, как и в случае ортогональных поляризаций, равен 0
4. В случае контраст полос существенным образом зависит от разности частот и времени экспозиции.
При взятии интеграла в соотношении полагалось, что разность фаз не зависит от времени. Реальные же источники света излучают с постоянной фазой лишь в течение некоторого характерного времени, называемого временем когерентности. По этой причине, при рассмотрении вопросов интерференции оперируют понятием когерентности волн. Волны называют когерентными, если разность фаз этих волн не зависит от времени. В общем случае говорят, что волны частично когерентны. При этом поскольку существует некоторая зависимость от времени, интерференционная картина изменяется во времени, что приводит к ухудшению контраста либо к исчезновению полос вовсе. При этом в рассмотрении задачи интерференции, вообще говоря и не монохроматического (полихроматического) излучения, вводят понятие комплексной степени когерентности . Интерференционное соотношение принимает вид
Оно называется общим законом интерференции стационарных оптических полей.
Интерференция света происходит не в результате сложения разных фотонов, а в результате интерференции фотона самого с собой . При этом временная когерентность не требуется для формирования статистической интерференционной картины — фотоны могут проходить один за одним с неограниченным периодом следования. В 1909 году английский учёный Джеффри Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.