Interested Article - Металлическая связь

Металли́ческая связь химическая связь между атомами в металлическом кристалле, возникающая за счёт перекрытия их валентных электронов . Металлическая связь описывается многими физическими свойствами металлов, такими как прочность , пластичность , теплопроводность , удельное электрическое сопротивление и проводимость , непрозрачность и блеск .

Механизм металлической связи

В узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся электроны проводимости , происходящие из атомов металлов при образовании ионов. Эти электроны играют роль «цемента», удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Когда металл принимает какую-либо форму или растягивается, он не разрушается, потому что ионы в его кристаллической структуре довольно легко смещаются относительно друг друга . Силы связи не локализованы и не направлены. В металлах в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).

Рис. 1. Расположение ионов в кристалле щелочного металла

Так, щелочные металлы кристаллизуются в кубической объёмно-центрированной решётке, и каждый положительно заряженный ион щелочного металла имеет в кристалле по восемь ближайших соседей — положительно заряженных ионов щелочного металла (рис. 1). Кулоновское отталкивание одноимённо заряженных частиц (ионов) компенсируется электростатическим притяжением к электронам связывающих звеньев, имеющих форму искажённого сплющенного октаэдра — квадратной бипирамиды, высота которой и рёбра базиса равны величине постоянной решётки a w кристалла щелочного металла (рис. 2).

Рис. 2. Связывающее звено кристаллической решётки щелочного металла

Связывающие электроны становятся общими для системы из шести положительных ионов щелочных металлов и удерживают последние от кулоновского отталкивания.

Величина постоянной трансляционной решётки a w кристалла щелочного металла значительно превышает длину ковалентной связи молекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:

Щелочной металл Li Na K Rb Cs
Постоянная решётки a w , Å 3,502 4,282 5,247 5,690 6,084
Длина ковалентной связи для Me 2 , Å 2,67 3,08 3,92 4,10 4,30

Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с « поверхностью Ферми », которую следует рассматривать как геометрическое место в k -пространстве, где пребывают электроны, обеспечивая основное свойство металла — проводить электрический ток . Таким образом, электрический ток в металлах — это движение сорванных с орбитального радиуса электронов в поле положительно заряженных ионов, находящихся в узлах кристаллической решётки металла. Выход и вход свободных электронов в связывающее звено кристалла осуществляется через точки «0», равноудалённые от положительных ионов атомов (рис. 2).

Свободное движение электронов в металле подтверждено в 1916 году по резкому торможению быстро вращающейся катушки с проводом — свободные электроны продолжали двигаться по инерции, в результате чего гальванометр регистрировал импульс электрического тока . Свободное движение электронов в металле обусловливает высокую теплопроводность металла и склонность металлов к термоэлектронной эмиссии , происходящей при умеренной температуре.

Колебание ионов кристаллической решётки создаёт сопротивление движению электронов по металлу, сопровождающееся разогревом металла. В настоящее время важнейшим признаком металлов считается положительный температурный коэффициент электрической проводимости , то есть понижение проводимости с ростом температуры. С понижением температуры электросопротивление металлов уменьшается, вследствие уменьшения колебаний ионов в кристаллической решётке. В процессе исследования свойств материи при низких температурах Камерлинг-Оннес открывает явление сверхпроводимости . В 1911 году ему удаётся обнаружить уменьшение электросопротивления ртути при температуре кипения жидкого гелия (4,2 К) до нуля. В 1913 году Камерлинг-Оннесу присуждается Нобелевская премия по физике со следующей формулировкой: «За исследование свойств веществ при низких температурах, которые привели к производству жидкого гелия ».

Однако теория сверхпроводимости была создана позднее. В её основе лежит концепция куперовской электронной пары — коррелированного состояния связывающих электронов с противоположными спинамии и импульсами, и, следовательно, сверхпроводимость можно рассматривать как сверхтекучесть электронного газа, состоящего из куперовских пар электронов, через ионную кристаллическую решётку. В 1972 году авторам теории БКШ Бардину , Куперу и Шрифферу присуждена Нобелевская премия по физике «За создание теории сверхпроводимости, обычно называемой БКШ-теорией».

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную , кубическую гранецентрированную и гексагональную .

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: K , Na , Li , β-Ti , β-Zr , Ta , W , V , α-Fe , Cr , Nb , Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca , Ce , α-Sr , Pb , Ni , Ag , Au , Pd , Pt , Rh , γ-Fe , Cu , α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg , α-Ti , Cd , Re , Os , Ru , Zn , β-Co , Be , β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность . Многие металлы обладают высокой твёрдостью, например хром , молибден , тантал , вольфрам и др. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

Расплавы металлов

Расплавы не теряют свойств кристаллических металлов. И теплопроводность и электропроводность остаётся высокой. В качестве примера можно привести ртутные контакты, в которых в полной мере используются электропроводность жидкой ртути.

Примечания

  1. от 25 июля 2017 на Wayback Machine . chemguide.co.uk
  2. от 24 апреля 2021 на Wayback Machine . chemguide.co.uk
  3. от 20 сентября 2015 на Wayback Machine . chemguide.co.uk
  4. . physics.ohio-state.edu
  5. (англ.) . Encyclopædia Britannica . Дата обращения: 1 марта 2020.
  6. Справочник химика. — 2-е изд., перераб. и доп. — Л.-М.: ГНТИ Химической литературы, 1962. — Т. 1. — С. 402—513. — 1072 с.
  7. Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. Константы неорганических веществ.. — М. : Химия, 1987. — С. 132—136. — 320 с.
  8. Зиман Дж. // Успехи физических наук. — 1962. — Т. 78 , вып. 2 . — С. 291 . — doi : . 24 февраля 2020 года.
Источник —

Same as Металлическая связь