Interested Article - Турбина

Монтаж паровой турбины.

Турби́на ( фр. turbine от лат. turbo вихрь , вращение ) — устройство с непрерывным рабочим процессом и с вращательным движением рабочего элемента , на котором происходит преобразование кинетической энергии и/или внутренней энергии рабочего тела ( пара , газа , воды ) в механическую работу на валу . Обычно представляет собой лопаточную машину , но бывают и безлопастные турбины такие как турбина Тесла . Как правило, процесс в турбине описывается как адиабатический необратимый , то есть с возрастанием энтропии .

Струя рабочего тела воздействует на лопатки , закреплённые по окружности ротора , и приводит их в движение. Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях , как составная часть приводов на морском, наземном и воздушном транспорте, привода компрессора в газотурбинном двигателе, а также гидродинамической передачи.

История

Древнеримская турбинная мельница в Шемту, Тунис . Тангенциально направленный поток воды вращал погруженное в воду горизонтальное колесо на вертикальной оси.

Попытки создать механизмы , похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. н. э.). По словам И. В. Линде , XIX век породил «массу проектов», которые остановились перед «материальными трудностями» их выполнения. Лишь в конце XIX века, когда развитие термодинамики (повышение КПД турбин до сравнимого с поршневой машиной), машиностроения и металлургии (увеличение прочности материалов и точности изготовления, необходимых для создания высокооборотных колёс), Густаф Лаваль ( Швеция ) и Чарлз Парсонс ( Великобритания ) независимо друг от друга создали пригодные для промышленности паровые турбины.

Хронология

  • Около I в. н. э.: Паровая турбина Герона Александрийского ( эолипил ) — на протяжении столетий рассматривалась как игрушка и её полный потенциал не был изучен.
  • 1500: В чертежах Леонардо да Винчи встречается « ». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.
  • 1551: Таги-аль-Дин придумал паровую турбину , которая использовалась для питания самовращающегося вертела.
  • 1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице .
  • 1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.
  • 1791: Англичанин получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.
  • 1832: Французский ученый Бюрден создал первую водяную турбину .
  • 1837: И. Е. Сафонов создал первую в России водяную турбину .
  • 1872: разработал первый настоящий газотурбинный двигатель.
  • 1887: русский инженер и изобретатель Павел Дмитриевич Кузьминский сконструировал первую в мире газовую реверсивную турбину, которая работала на «газопаророде» — парогазовой смеси, получаемой в созданной им же в 1894 году камере сгорания.
  • 1892: Аурель Болеслав Стодола основал турбомашинную лабораторию, известную в настоящее время как . Консультации Стодолы сыграли важную роль при создании Генри Зоэлли в 1903 году его первой многоступенчатой турбины и Гансом Хольцвартом в 1905 году первой готовой к производству газовой турбины.
  • 1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно Турбиния . Этот принцип тяги используется до сих пор.
  • 1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кембридже и использовались для электрического освещения улиц города.
  • 1903: Норвежец, (англ.) , смог построить первую газовую турбину, которая отдавала больше энергии, чем затрачивалось на обслуживание внутренних компонент турбины, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 л. с. (существенная мощность для того времени). Его работа впоследствии была использована сэром Фрэнком Уиттлом .
  • 1913: Никола Тесла запатентовал турбину Тесла , основанную на эффекте граничного слоя.
  • 1918: General Electric , один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.
  • 1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором .
  • 1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения . Впервые этот двигатель был успешно использован в авиации в апреле 1937.
  • 1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.
  • 1936: Ханс фон Охайн и Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.

Разработки Густафа Лаваля

Первую паровую турбину создал шведский изобретатель Густав Лаваль в 1883 году . По одной из версий, Лаваль создал её для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод . Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля , которое стало прародителем будущих ракетных сопел.

Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и перегрузку подшипников . Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.

Разработки Чарлза Парсонса

Схема активной и реактивной турбин, где ротор — вращающаяся часть, а статор — неподвижная.

В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий собой набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовался как « активный », так и « реактивный » принцип.

В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытовое судно « Турбиния » с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.

« Турбиния » — опытовое судно Чарлза Парсонса .

Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.

Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Конструкция турбин

Модель одной ступени паровой турбины.
Паровая турбина с раскрытым статором . На верхней части статора видны лопатки соплового аппарата.
Устройство гидротурбины системы Каплана .

Ступень турбины состоит из двух основных частей. Рабочего колеса — лопаток установленных на роторе(подвижная часть турбины), которое непосредственно создаёт вращение, и — лопаток установленных на статоре (неподвижная часть турбины), которые поворачивают рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса.

По направлению движения потока рабочего тела различают паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и , направление потока рабочего тела в которых оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие энтальпии , разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей ( редуктором ). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

Классификация

По типу рабочего тела

См. также

Примечания

  1. Турбина — статья из Большой советской энциклопедии .
  2. Техническая энциклопедия / Главный редактор Л. К. Мартенс . — М. : Государственное словарно-энциклопедическое издательство "Советская энциклопедия", 1934. — Т. 24. — 31 500 экз.
  3. И. В. Линде. от 23 июля 2016 на Wayback Machine . // Записки Московскаго отделения Императорского русского технического общества, 1904. С. 563—641.
  4. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М. , 2006. — ISBN 5‑9533‑0277‑0.
  5. Билимович Б. Ф. Законы механики в технике. — М. : Просвещение, 1975. — Тираж 80000 экз. — С. 169.
  6. Меркулов И. А. Газовая турбина / под ред. проф. А. В. Квасникова. — Москва: Государственное издательство технико-теоретической литературы, 1957. — С. 25 – 26.

Литература

  • Линде И. В. . // Записки Московскаго отделения Императорского русского технического общества, 1904. С. 563—641.

Ссылки

  • ГОСТ Р 51238-98
Источник —

Same as Турбина