Interested Article - Векторный анализ

Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы , как правило в двух- или трёхмерном пространстве.

Сфера применения

Объектами приложения векторного анализа являются:

Наибольшее применение векторный анализ находит в физике и инженерии . Основные преимущества векторных методов перед традиционными координатными:

  1. Компактность. Одно векторное уравнение объединяет несколько координатных, и его исследование чаще всего можно проводить непосредственно, не заменяя векторы на их координатную запись.
  2. Инвариантность. Векторное уравнение не зависит от системы координат и без труда переводится в координатную запись в любой удобной системе координат.
  3. Наглядность. Дифференциальные операторы векторного анализа и связывающие их соотношения обычно имеют простое и наглядное физическое истолкование.

Векторные операторы

Наиболее часто применяемые векторные операторы:

Оператор Обозначение Описание Тип
Градиент Определяет направление и скорость скорейшего возрастания скалярного поля. Скаляр вектор
Дивергенция Характеризует расходимость, источники и стоки векторного поля. Вектор скаляр
Ротор Характеризует вихревую составляющую векторного поля. Вектор вектор
Лапласиан Сочетание дивергенции с градиентом. Скаляр скаляр
Лапласиан векторный Вектор вектор

Дифференциальные операции второго порядка

Скалярное поле Векторное поле

Указанные операции называются дифференциальными операциями второго порядка по той причине, что они сводятся к двукратному дифференцированию скалярных или векторных функций (формально: в их символической записи оператор Гамильтона встречается два раза).

Основные соотношения

Приведём сводку практически важных теорем многомерного анализа в векторной записи.

Теорема Запись Пояснения
Теорема о градиенте Криволинейный интеграл от градиента скалярного поля равен разности значений поля в граничных точках кривой.
Теорема Грина Криволинейный интеграл по замкнутому плоскому контуру может быть преобразован в двойной интеграл по области, ограниченной контуром.
Теорема Стокса Поверхностный интеграл от ротора векторного поля равен циркуляции по границе этой поверхности.
Теорема Остроградского — Гаусса Объёмный интеграл от дивергенции векторного поля равен потоку этого поля через граничную поверхность.

Исторический очерк

Первым векторы ввёл У. Гамильтон в связи с открытием в 1843 г. кватернионов (как их трёхмерную мнимую часть). В двух монографиях (1853, 1866 посмертно) Гамильтон ввёл понятие вектора и вектор-функции , описал дифференциальный оператор набла », 1846) и многие другие понятия векторного анализа. Он определил в качестве операций над новыми объектами скалярное и векторное произведения, которые для кватернионов получались чисто алгебраически (при обычном их умножении). Гамильтон ввёл также понятия коллинеарности и компланарности векторов, ориентации векторной тройки и др.

Компактность и инвариантность векторной символики, использованной в первых трудах Максвелла (1873), заинтересовали физиков; вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд ( 1903 ) придал векторному исчислению современный вид. Примечательно, что уже в работах Максвелла кватернионная терминология почти отсутствует, фактически заменённая на чисто векторную. Термин «векторный анализ» предложил Гиббс (1879) в своём курсе лекций.

См. также

Литература

  • Александрова Н. В. Формирование основных понятий векторного исчисления. // Историко-математические исследования . — М. : Наука , 1982. — № 26 . — С. 205—234 .
  • Борисенко А. И., Тарапов И. Е. Векторный анализ и начала тензорного исчисления. М.: Высшая школа, 1966, 251 с.
  • Краснов М. Л., Кисилев А. И., Макаренко Г. И. Векторный анализ. Наука, 1978, 160 с. (2-ое изд. УРСС, 2002)
  • Кумпяк Д. Е. от 27 февраля 2014 на Wayback Machine Учебное пособие. Тверь: Тверской гос. университет , 2007, 158 с.
  • Мак-Коннел А. Дж. от 27 февраля 2014 на Wayback Machine М.: Физматлит , 1963, 411 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, том III. — М. : Наука , 1966.
  • В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович "Математический словарь высшей школы". Издательство МПИ 1984.

Примечания

  1. В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович "Математический словарь высшей школы". Издательство МПИ 1984. Статья "Оператор Лапласа" и "Ротор векторного поля".
  2. В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович "Математический словарь высшей школы". Издательство МПИ 1984. Статья "Дифференциальные операции второго порядка".

Ссылки

Источник —

Same as Векторный анализ